
Declaration of the external interface between

the ng_biopro-software and another external

control-program

Uwe Tangen

Version 0.51, 05 September 2008

Uwe Tangen Ruhr-University-Bochum

Abstract

The aim of this speci�cation is to allow external programs to control

essential parts of the Omega-machine via an as simple as possible interface.

The general idea behind this is to plug the ng_biopro-software into an

externally provided optimization and control-system to facilitate a system-

integration on a larger scale.

The interface will not encompass all ng_biopro-software functionalities

but expects the experimenter to setup the experiment with the ng_biopro-

software and after having done so giving control to the external program.

1 General setup

The ng_biopro-software partially works as a client of the Bio@Fox-board, pro-
vides the interface to the camera and will retain full control of the Omega-
machine. The software will open an external TCP-socket at port 8086 to allow
for external control when it is launched with the option '-ext'.

Before it makes sense to control parts of the Omega-machine with the ex-
ternal program the experiment has to be set up already. Everything should be
as prepared as a normal experimental session would require.

The external program is launched and it opens the port 8086 at the ng_biopro-
software (the IP-address must be the address of the machine running the ng_biopro-
software).

Example:

ssh liszt -l biopro

cd test

ng_biopro_i686 -ext -srv

1

The server-option is useful if the ng_biopro-software should be used
for testing-purposes. If a �rewall is between the machine execut-
ing the external program and the machine executing the ng_biopro-
software, the port 8086 must be tunneled through the SSL-connection,
which currently is not working - sorry.

ssh liszt -l biopro -L 8086:liszt:8086

and start the external program with

ng_biopro_external localhost 8086

The external control-program acts as a client to the ng_biopro-software. The
external program opens a control-session with specifying a certain name for
that session and perhaps additional data in a comment-string. The name of the
control-session is always printed out when actions are logged. When �nishing the
control session, the external-program shall close the session with an appropriate
command to allow for a graceful shutdown of the TCP-connection.

The general communication between the external client and the ng_biopro-
software is realized via the exchange of ASCII-strings. Binary data is NOT
communicated. This saves from the problem of little and big-endian machines.

A communication string starts with the length of the string, given in bytes,
and a 1 byte command. Atom-delimiter is the space (blank, 0x20). Integers
begin with a non-'0' character and hex-numbers with '0x'. Doubles or �oats
contain at least a '.' or an 'e' in the set of digits. Upper and lower case
DOES matter, 'a' is NOT equal 'A'. Strings with blanks are encapsulated with
quotation-marks (0x22).

Sometimes commands require acknowledgements. The simple acknowledge-
ment is given by a y (0x79) and the appended session-name, which allows the
external program to check the communication channel.

If there are sequences of items, be it atomic-names, numbers or strings, these
sequences are prepended with the number of these items. E.g., naming three
colors as a list would be written as: 3 black white yellow.

2 The commands speci�cation

In the examples shown below the length of the commands will not be shown.
It is determined via the strlen()-function in a lower level of the communication
system.

2.1 Quick-list of all commands and return-parameters

2.1.1 Commands which can be sent to the ng_biopro-software

(Caution: all hardware related names are speci�c to the BioMIP-setup. They
might be di�erent in test- or other lab-environments!)

� 'a' (0x61) - Set AOTF or light-source intensity (2.4.3) {name [biofox_blue,
biofox_red, biofox_yellow]} [{intensity [0..63]}]

2

� 'B' (0x42) - Start (begin) a prede�ned cylce (2.3.1) {quali�er [aotf, cam-
era, �lter, level_one, light, macro, measurement, pin, prepos,
pump, sensor, sequence, series, temp_cycle, wheel, xyzpos]}
{name} [{start at position n (from zero counted)}] /* not yet implemented
*/

� 'C' (0x43) - De�ne camera parameters (2.4.1) {name [eval_cam]} [{expo-
sure time in seconds} [{camera gain [0..255]}]].

� 'c' (0x63) - Close a session (2.2.1)

� 'd' (0x64) - List all pins available in design (2.2.2)

� 'E' (0x45) - Stop (end) a prede�ned running cycle (2.3.2) {quali�er [aotf,
camera, �lter, level_one, light, macro, measurement, pin, pre-
pos, pump, sensor, sequence, series, temp_cycle, wheel, xyz-
pos]} {name} [end] /* not yet implemented */

� 'e' (0x65) - Apply a certain potential to an electrode (2.3.5) {pin-ID
[0x80008f0]} {polarity [-, +, z]}

� 'f ' (0x66) - Set a �lter-wheel to a speci�ed position (2.3.6) {wheel-name
[emission]} {�lter-position [1..10]}

� 'G' (0x47) - Get status of a prede�ned cycle (2.3.3) {quali�er [aotf, cam-
era, �lter, level_one, light, macro, measurement, pin, prepos,
pump, sensor, sequence, series, temp_cycle, wheel, xyzpos]}
{name} /* not yet implemented */

� 'g' (0x67) - Get a value of a sensor (2.3.7) {nr. of sensors [1..n]} {sensor-
IDs [0x20008f4, ..]}

� 'i' (0x69) - Get an image from server (2.3.8)

� 'I' (0x49) - Get status from calling a shell-script (2.2.3) {parameters for
shell-script}

� 'l' (0x6c) - List a sensors-data (2.2.5) {sensor-ID [0x2000013]}

� 'L' (0x4c) - Extract a list of names (2.2.4) {quali�er [aotf, camera, �l-
ter, level_one, light, macro, measurement, pin, prepos, pump,
sensor, sequence, series, temp_cycle, wheel, xyzpos]}

� 'm' (0x6d) - List all measurement bodies (2.2.6)

� 'n' (0x6e) - Set norm-duty, active-duty and reference-cycle (2.4.4) {type
[norm, active, ref]} [{value [0..]}]

� 'o' (0x6f) - Open a session (2.2.7) {session name} [{comment}]

� 'p' (0x70) - De�ne new pump-parameters (2.4.5) {pump-ID [1..]} {quali�er
[dia, �ow, unit, comment]} [{value}]

3

� 'Q' (0x51) or 'q' (0x71) - Abort a session (2.2.8)

� 'r' (0x72) - Get a full report on actions taken (2.2.9) {quali�er [after,
since]} [{id}] /* not yet implemented */

� 'S' (0x53) - Synchronize to an existing event or cycle (2.3.4)/* not yet
implemented */

� 's' (0x73) - set and get the state of the system (2.2.10)

� 'T' (0x54) - Set temperature (2.4.2) {name [biofox_A, biofox_B, bio-
fox_F]} [{temperature in °C}]

� 't' (0x74) - Execute a test program (simulate an intensity-pro�le) (2.2.11)/*
not yet implemented */

� 'u' (0x75) - Control the pumps (start, stop etc.) (2.3.9) {action [inject_all,
withdraw_all, stop_all, inject, withdraw, stop]} [{pump-ID}]

� 'v' (0x76) - Update design-window (2.2.12)

� 'x' (0x78) - Move the xy-table to a certain position (2.4.6) {nr. of axes
[2]} [{name + position-x name + position-y in micro-meter}]

� 'Y' (0x59) - Extract a list of all cycles known (2.2.13) /* not yet imple-
mented */

� 'y' (0x79) - Move the xy-table and z-stage to a prede�ned position (2.4.7)
{name of position}

� 'z' (0x7a) - Set position of z-stage (2.4.8) {absolute position in micro-
meter}

2.1.2 Possible return commands received from the ng_biopro-software

� 'c' (0x63) from 'Y' (2.2.13),

� 'f ' (0x66) from 'i' (2.3.8),

� 'g' (0x67) from 'l' (2.2.5),

� 'h' (0x68) from 'i' (2.3.8),

� 'i' (0x69) from 'g' (2.3.7),

� 'l' (0x6c) from 'i' (2.3.8),

� 'm' (0x6d) from 'm' (2.2.6),

� 'n' (0x6e) from 'L' (2.2.4),

� 'p' (0x70) from 'd' (2.2.2),

4

� 'R' (0x52) from 'i' (2.3.8),

� 'r' (0x72) from 'i' (2.3.8),

� 's' (0x73) from 's' (2.2.10), 'G' (2.3.3), 'I' (2.2.3)

� 'S' (0x53) from 'i' (2.3.8),

� 't' (0x74) from 'i' (2.3.8),

� 'x' (0x78) from 'i' (2.3.8),

� 'y' (0x79) from 'o' (2.2.7), 'c' (2.2.1), 'm' (2.2.6), 'd' (2.2.2), 'f ' (2.3.6),
'I' (2.2.3), 'L' (2.2.4), 'u' (2.3.9), 'v' (2.2.12), 'r' (2.2.9), 't' (2.2.11), 'B'
(2.3.1), 'E' (2.3.2), 's' (2.2.10), 'C' (2.4.1), 'T' (2.4.2), 'a' (2.4.3), 'n'
(2.4.4), 'p' (2.4.5), 'x' (2.4.6), 'y' (2.4.7) or 'z' (2.4.8)

2.2 General interface-commands and utility functions

Without any commands given, the server might stop the communication either
with _MSG_QUIT_ ('Q', 0x51) or with 'q' (0x71). The numbers in brackets
starting with '0x' are the hexadecimal equivalents of the command-letters. Most
commands return 'E' plus an explanation string if something fails. The usual
return-scheme is not altered though.

2.2.1 'c' (0x63) - Close a session

(back to 2.1.1)
This call has no parameters. The return-value will be y (0x79) with the

session-name of the just closed session as a control. After having received the
correct return the connection to the ng_biopro-software can be savely shut
down.

Example:
c
return:
y my_�rst_test

2.2.2 'd' (0x64) - List all pins available in the design

(back to 2.1.1)
This command returns a list of all known pins with speci�cs on the single

pins. The pinID is then needed for the command e, see section 2.3.5. There exist
some pins which do not have a net-connected. Though these pins are electrically
active, which is due to the special electrodes layout, the according cannot be
extracted. Because these pins are sitting at the end of a net and there name is
of type *-4 ...*-8 the according valid pins are these with just 4 substracted from
the shown numbersi, e.g. B3_WS_X3-6 is identical with B3_WS_X3-2. The
position information given are the real coordinates in the design. These are not

5

the coordinates in the camera-window. Only after synchronizing both windows
the according camera-coordinates can be calculated.

Example:
d
Return:
p 0x80008f0 B3_WS_O3-2 /B3/N_9428(1) 234.5 323.2
.......pinID..... ..pin-name......net-name........x.......y
.
.
.
y my_�rst_test

2.2.3 'I' (0x49) - get information on the status of shell-script execu-
tion

(back to 2.1.1)
Returns information from an executed shell-script.
I /home/biopro/bin/rob_info_a.sh test upper
...... path of info-scriptlist of parameters ...
Return:
I 2 height 30
I 4 width 34 65 78
.
.
y my_�rst_test

2.2.4 'L' (0x4c) - extract a list of names

(back to 2.1.1)
This command list the known names of certain element categories. A user

at the ng_biopro-software can de�ne an abritrary number of names, be it
measurement-elements, sensors, temperature cycles, table-movement cycles, elec-
trode pattern and so on. The command allows to specify the following categories
or element-types: aotf, camera, �lter, level_one, light, macro, measure-
ment, pin, prepos, pump, sensor, sequence, series, temp_cycle, wheel,
xyzpos.

The return will be a list of names plus the current intensity and a y (0x79)
with the session-name appended as last string.

Example:
L light
.. quali�er ...
return:
n 'biofox_blue'
... name
n 'biofox_red'
y my_�rst_test

6

2.2.5 'l' (0x6c) - list a sensors-data

(back to 2.1.1)
This command gives back data from a sensor. The sensorID can be derived

from m (see section 2.2.6).
The command needs the sensorID as parameter and returns the name and

the geometry.
Example:
l 0x2000013
... sensor-ID ...
Return:
g test_sen 8 23 25 30 30 45 60 56 89
.....name..nr..x0,y0, x1,y1, x2,y2, x3,y3

2.2.6 'm' (0x6d) - list all measurement bodies

(back to 2.1.1)
This command gives back a list of measurement-bodies known to the ng_biopro-

software which do have a known size and position in the camera-window. Either
these are drawn by hand with the Measurement-button or they steem from the
design-window after synchronizing the camera-window with the design-window
(Adjust-button). Each item of the list contains the name of this measurement
and a list of its sensorIDs in the camera-window.

The command has no parameters and returns a set of strings starting with
m (0x6d) with the last string being the acknowledgement. A side-e�ect of this
command is the initialization of the sensors just given back. This initialization
might take some time, depending on the number of sensors extracted.

Example:
m
Return:
m test_meas 3 0x2000014 0x200000d 0x200000b
........name....nr..............IDs......
m back_sen 1 0x200000c
y my_�rst_test

2.2.7 'o' (0x6f) - Open a session

(back to 2.1.1)
This call has two parameters: the name of the session, given as a string or

atomic sequence of characters (without blank-character) and a comment-string
which will also be logged in the session.out �le of the ng_biopro-software. The
name of the session is being prepended with all actions of the external-program
and written in the session.out-�le of the ng_biopro-software.

The return value will be y (0x79) with the session-name appended.
Example:
o my_�rst_test �this will be an opportunity�
....... session comment ...

7

return:
y my_�rst_test

2.2.8 'q' (0x71) or 'Q' (0x51) - Abort a session

(back to 2.1.1)
This call has no parameters and no return. It should be used if something

with the software is wrong.
Example:
q
return:
none

2.2.9 'r' (0x72) - Get a full report on actions taken /* not yet im-
plemented */

(back to 2.1.1)
All actions either via this external interface or interactively at the graphical-

user-interface will be stored in a command- or action-list. This list can be
fetched with this command. The command has two quali�ers: either the after
with a number as parameter or since with a time (in seconds since 01.01.1970
and micro-seconds as second parameter). If no parameters are provided all
available actions are reported. If the ID of the action is omitted then the last
action is shown.

Example:
r after [56]
... quali�er ... id ...
return:
c 57 34382322 243234 u inject 3
.. nr . seconds .. usec .. command .. quali�ers and parameters
c 58 34682322 23423 u stop 2
y my_�rst_test

2.2.10 's' (0x73) - get the state of the system

(back to 2.1.1)
This command just returns hex-number which �ags represent the global

state of the ng_biopro-software or it is able to set the corresponding bits. The
�rst possible parameter of the command is a mask which de�nes, which bits are
a�ected and the second possible parameter are the acutal bits (several bits can
be set at the same time, the number have to be given in hex-code, '0xa' and
'a' are equivalent). Please take care on the bits set, they can result in strange
program-behavior.

The �ags are the following:

_S_NON_INT_ 0x00000100 /* Non−i n t e r a c t i v e mode */
_S_GRAFIK_UP_ 0x00000400 /* Graphics are up and ope r a t i ona l */

8

_S_CAMERA_ 0x00001000 /* A r e a l camera i s attached */
_S_SHUTDOWN_ 0x00002000 /* Shutdown i s ongoing */
_S_FOX_OKAY_ 0x00004000 /* Foxboard i s up and running */
_S_NO_CAM_AQU_ 0x00008000 /* Do not aqu i r e images automat i ca l l y */
_S_TEMP_CONT_ 0x00010000 /* Temperature−c on t r o l enabled */
_S_XY_CONT_ 0x00020000 /* XY−t ab l e c on t r o l enabled */
_S_Z_CONT_ 0x00040000 /* Z−s tage con t r o l enabled */
_S_LIGHT_CONT_ 0x00080000 /* Light−c on t r o l enabled */
_S_ENA_CYC_ 0x00100000 /* Enable c y c l i n g */
_S_CYC_RIGHT_ 0x00200000 /* Cycle in r i g h t d i r e c t i o n */
_S_DIS_CYC_ 0x00400000 /* Disab le c y c l i n g */
_S_PUMPS_DEF_ 0x00800000 /* Pumps usage i s wanted */
_S_BIO_OKAY_ 0x01000000 /* BioPRO−Module i s s u c c e s s f u l l y conf */

This state is returned with an 's' (0x73) and the session-name appended.
Example:
s [{mask} [{bits}]]
Return:
s my_�rst_test 0x0081d400

2.2.11 't' (0x74) - Execute a test program /* Not yet implemented
*/

(back to 2.1.1)
This program is either hardcoded into the software or a script written in

NGEN-notation. The parameters semantic is insofar de�ned that the �rst pa-
rameter has to be the number of tokens or parameters given. Strings with
white-space characters inside have to be enclosed via quotation marks. The test-
program has to be callable via the alphanumerical interface of the ng_biopro-
software. The standard output generated from the test-program is returned as
a list of strings. These strings are not interpreted. The last returned value is y
(0x79) with the session-name appended.

Example:
t t_prog_24 3 jojo 34 940
return:
o �This test was successful�
....
o �we will stop this test�
y my_�rst_test

2.2.12 'v' (0x76) - Update design-window (let the experimenter stay-
ing informed)

(back to 2.1.1)
This call has no parameters. The return-value will be y (0x79) with the

session-name. The command is there for convenience and control. Because up-

9

dating the graphical design-window is costly this command lets the user decide
when to do it. The functionality of the other commands is not a�ected.

Example:
v
return:
y my_�rst_test

2.2.13 'Y' (0x59) - extract a list of known cycles /* not yet imple-
mented */

(back to 2.1.1)
This command list the known names of certain element categories. A user

at the ng_biopro-software can de�ne an abritrary number of names, be it
measurement-elements, sensors, temperature cycles, table-movement cycles, elec-
trode pattern and so on. The command allows to specify the following categories
or element-types: aotf, camera, �lter, level_one, light, macro, measure-
ment, pin, prepos, pump, sensor, sequence, series, temp_cycle, wheel,
xyzpos.

The return will be a list of names plus the current intensity and a y (0x79)
with the session-name appended as last string.

Example:
Y
return:
c 't3-35'
.... name of cycle .. new

c 'biofox_red_34'
y my_�rst_test

2.3 Action commands used for controlling the experiments

2.3.1 'B' (0x42) - Start (begin) a prede�ned cycle /* not yet imple-
mented */

(back to 2.1.1)
This command launches a certain de�ned cycle. This cycle might be a

aotf, camera, �lter, level_one, light, macro, measurement, pin, pre-
pos, pump, sensor, sequence, series, temp_cycle, wheel, xyzpos cycle.
After the quali�er the according name of the de�ned cycle has to be written.
If the name contains white-space-characters it has to be enclosed in quotation-
marks. Depending on the type of cylce further parameters might be de�ned.
With no start position de�ned only the current cycle position is returned. The
acknowledgement return value is y (0x79) with the session-name appended and
the current cycle position.

Example:
B temp_cycle test_cycle [4]
.... quali�er name .. start at position 4 (from zero counted)

10

return:
y my_�rst_test 5
.... session.......current position in cycle

2.3.2 'E' (0x45) - Stop (end) a prede�ned running cycle /* not yet
implemented */

(back to 2.1.1)
Stop a certain running cycle. Cycle-quali�ers are: aotf, camera, �lter,

level_one, light, macro, measurement, pin, prepos, pump, sensor, se-
quence, series, temp_cycle, wheel, xyzpos. This command is orthogonal
to subsection 2.3.1. The acknowledgement return value is y (0x79) with the
session-name appended.

Example:
E move_cycle grappa end
... quali�er name .. wait till the last element of the cycle before stopping
return:
y my_�rst_test 34
..... session-id ... position where the cycle stopped .. new

2.3.3 'G' (0x47) - Get status of a prede�ned cycle /* not yet imple-
mented */

(back to 2.1.1)
Get a status of certain cycle. Cycle quali�ers are aotf, camera, �lter,

level_one, light, macro, measurement, pin, prepos, pump, sensor, se-
quence, series, temp_cycle, wheel, xyzpos. This command is orthogonal
to subsection 2.3.1. The return is 's' with cycle-speci�c informations.

Example:
G temp_cycle test_cycle
.. quali�er name ...
return:
s test_cycle 4 26.3 130.4
... name cur. pos. ... temperature setpoint ... waiting time in sec.

2.3.4 'S' (0x53) - Synchronize to an existing event or cycle /* not
yet implemented */

(back to 2.1.1)
With this command we can wait for certain events to happen before we con-

tinue in the program execution. The type of event is speci�ed with a quali�er.
The following quali�er are speci�ed: aotf, camera, �lter, level_one, light,
macro, measurement, pin, prepos, pump, sensor, sequence, series,
temp_cycle, wheel, xyzpos. With no further parameter given the synchro-
nization event occurs right after the execution of the current element. When
the event occured the command returns with y (0x79) and the session-name
appended.

11

Example:
S measurement refractive_index
... quali�er .. name of measurement, after storing the data on disk a signal

is raised.
S temp_cycle heatup 5
... quali�er ... name .. after processing this position in the temp-cycle raise

signal.
return:
y my_�rst_test

2.3.5 'e' (0x65) - Apply a certain potential to an electrode

(back to 2.1.1)
This command is the most simple of a list of commands controlling elec-

trodes. The parameters required are the name of the elektrode and the potential
to be exerted: '-' equals 0V, '+' equals 3.3V and 'z' equals high-impedance. The
electrodes name is actually the pin-name of this electrode which can be read in
sessions.out-window when clicking on that speci�c electrode.

Example:
e 0x80008f0 -
e 0x800032a +
e 0x800032b z
Return:
None (no return to allow fast switching of electrodes)

2.3.6 'f ' (0x66) - set a �lter-wheel to a certain position

(back to 2.1.1)
With this command a �lter can be changed in a �lter-wheel. With no �lter-

number spe�cied only the current �lter-position is returned. The usual acknowl-
edgement is sent on success plus the indication which �lter is active.

Example:
f emission [8]
... wheel-name .. �lter-position
Return:
y my_�rst_test 4
......................cur. wheel.. new

2.3.7 'g' (0x67) - get a value of a sensor

(back to 2.1.1)
This command is accompanied with the handle of that sensor (availabe via

the list-sensors command in sec. 2.2.5. Returned is a list of intensities beginning
with i (0x69) which re�ects exactly the sequence of geometries returned via the
list-sensors command. The value given back for each geometry is a real-valued

12

average intensity of the according geometry (=
∑

pixel intensities

nr. of pixels). The pixel-
intensities are the raw-uninterpreted pixel-values retrieved from the camera.
This means that e.g. for a 12-bit depth camera the maximum pixel value is
4095.

Example:
g 3 0x20008f1 0x20008f4 0x20008f0
... nr. of sensors ... sensor-IDs ...
Return:
i 3 365.45 738.2 453.6

2.3.8 'i' (0x69) - Fetch a single camera image

(back to 2.1.1)
This command asks the ng_biopro-software to provide a current image. This

image contains the full camera view (equivalent to the snap-shot-action in the
graphical user-interface). The return of this command is a full image, beginning
with a header de�ning the size in x- and y-coordinates and a number of rows
containing the actual image-data. Each row returned has x-entries of short
(two bytes, or 16bit) intensity values. There are y rows returned. The upper
byte of the intensity-value is given �rst, the lower byte second. Furthermore,
context data for the image is returned. See section 'Information appended to
each image' in the ng_biopro User Manual. The image counter 'r', which is
counted relative to the open session, is the last returned entity.

Example:
i
Return:
h 1004 1002
R I0UI0LI1UI1LI2UI2L I1003UI1003L
... upper-byte of intensity at x = 0, lower-byte of intensity at x = 0,
t 1178095092 124578
.... seconds usec ..
f 'emission' '1white'
... wheel �lter ...
l 'biofox_blue' 0
...... name intensity [0..63]
l 'biofox_red' 0
x 'x =' 2450955
.... axis .. um ...
x 'y =' -59685
x 'PI =' 39985
S 'biofox_A' 2645
.... sensor ... temperature in °C * 100 ...
S 'biofox_B' -24645
S 'biofox_F' -355
r 2682
.... image counter

13

2.3.9 'u' (0x75) - Control the pumps (start, stop etc.)

(back to 2.1.1)
This command starts and stops the pumps. The following quali�ers are pos-

sible: inject_all, withdraw_all, stop_all, inject, withdraw, stop. The
inject-, withdraw- and stop-quali�ers do require a further parameter: the
number of the pump which is a�ected. If, for example, a pump is not able
to withdraw (e.g. the MMT-pumps) then the according command is simply
ignored.

The return-value will be y (0x79) with the session-name.
Example:
u inject [2]
...start pump 2 with injection ..
return:
y my_�rst_test 23.3 45.6 67.9
......................pumps-rates (zero when pumps are stopped) new

2.4 Specifying hardware details and parameters

2.4.1 'C' (0x43) - De�ne camera parameters

(back to 2.1.1)
De�ne all parameters of a camera needed to specify its functionality. With

no exposure-time speci�ed the current values of the camera are returned. The
return-value will be y (0x79) with the session-name plus the camera parameters
realized.

Example:
C eval_cam [4 [80]]
.... name .. exposure time in seconds .. [camera gain].
return:
y my_�rst_test 0.045 75
......session......cur. exposure, cur. gain...

2.4.2 'T' (0x54) - Set temperature

(back to 2.1.1)
Set a certain temperature. With no temperature speci�ed only the current

temperature is returned. The return-value will be y (0x79) with the session-
name plus the measured temperature of this sensor.

Example:
T biofox_A [45.0]
... name temperature in °C ...
return:
y my_�rst_test 34.4
.....session......curr. temperature... new

14

2.4.3 'a' (0x61) - Set AOTF or light-source intensity

(back to 2.1.1)
Set a certain light-source intensity. With no intensity speci�ed the current

intensity value is returned. The return-value will be y (0x79) with the session-
name plus the valid or measured intensity.

Example:
a biofox_blue [45]
... name intensity [0 .. 63] ...
return:
y my_�rst_test 66
....session........intensity....

2.4.4 'n' (0x6e) - Set norm-duty, active-duty and reference-cycle

(back to 2.1.1)
Set the general electrode parameters. Three quali�ers (norm - norm-duty,

active - active-duty, ref - reference-cycle) de�ne what value is to be speci�ed.
With no value given only the current setting is returned. The return-value will
be y (0x79) with the session-name plus the measured or de�ne setting.

Example:
n norm [80]
.. norm-duty in %
n active [90]
.. active-duty in %
n ref [400]
.. ref. cycle in 1/10 per milli-second
return:
y my_�rst_test val
.......session......according value....

2.4.5 'p' (0x70) - De�ne new pump-parameters

(back to 2.1.1)
De�ne the pump-parameters. Some quali�ers (dia - diameter of syringe,

�ow - �ow-rate of �uid, unit - volume per time, comment) de�ne what acu-
tally is speci�ed. If the according quali�er does not make sense for the particular
pump hardware (e.g. the �ow-unit with the MMT-pumps is always ul/h) it is
simply ignored. If no value is given then the current value is returned. The
return-value will be y (0x79) with the session-name plus the speci�ed or mea-
sured value.

Example:
p 1 dia [4.61]
.. nr of pump .. quali�er .. diameter of the syringe in mm.
p 2 unit [ul/h]
.. nr of pump .. quali�er .. the �ow-unit is in this case give as micro-liters

per hour

15

p 2 �ow [50]
.. nr of pump .. quali�er .. a �ow-rate of 50 ul/h speci�ed
p 2 comment [�test oil�]
return:
y my_�rst_test val
.......session.....current value.... new

2.4.6 'x' (0x78) - Move the xy-table to a certain position

(back to 2.1.1)
Set position of the xy-table is given as a xy-pair of coordinates. The com-

mand without any parameters returns the current position of the xy-table. The
return-value will be y (0x79) with the session-name plus the measured position
of the xy-table.

Example:
x 2 x 44394 y 22000
... nr. of axes .. name + position-x name + position-y in micro-meter
return:
y my_�rst_test pos. x pos. y
......session......coordinate of current table position.

2.4.7 'y' (0x79) - Move the xy-table and z-stage to a prede�ned
position

(back to 2.1.1)
This command is in the sense di�erent to the one given in sec. 2.4.6, because

now not the absolute position vektor is given, instead a name from one of the
prede�ned positions. These prede�ned positions are speci�ed with the graphical
user-interface of the ng_biopro-software. If the named position is not available
the current named position is returned. The return-value will be y (0x79) with
the session-name plus the active named position.

Example:
y [test_position_a]
....... name ..
return:
y my_�rst_test test_position_z
......session......actual speci�ed position..

2.4.8 'z' (0x7a) - Set position of z-stage

(back to 2.1.1)
Set the height of the zStage to an absolute value. With no absolute value

given only the current position is returned. The return-value will be y (0x79)
with the session-name plus the current position of the zStage.

Example:
y [34]

16

.. position ..
return:
y my_�rst_test 35.0
......session......actual position.... new

3 Low level communication

3.1 Includes

#define _V_MESS_ABORT_ 0x11

#define _MAX_TCP_BUF_ 2048

3.2 Sending data

int ng_senddata(

ng_ngen *p_ngen, /* Main NGEN-structure */

int sock, /* Socket descriptor */

unsigned short desc, /* Message descripter (only lower byte) */

int len, /* Length of message */

char *p_data /* Pointer to data message */

)

{

int l; /* Length of message */

unsigned char mdesc; /* A message descriptor is only a byte */

mdesc = desc;

l = htonl(len + 1); /* Do not change len (because */

/* of additional write) */

if (write(sock, &l, sizeof(l)) != sizeof(l))

printf("Could not write len %d!\n", len);

else

{

if (write(sock, &mdesc, sizeof(mdesc)) != sizeof(mdesc))

printf("Could not write type 0x%x 0x%x!\n",

desc, mdesc);

else

{

if(len > 0)

{

/*----- We do send something -----*/

if (write(sock, (char *) p_data, len) != len)

printf("Could not write %d bytes!\n", len);

}

}

}

17

return(0);

}

3.3 Receiving data

Function read_sock:

static int read_sock(

int sock, /* From where to read */

char *p_buf, /* Pointer to buffer */

int len /* Requested length in bytes */

)

{

int ist; /* Current number of characters read */

int rest; /* Still missing number of characters */

int n; /* Number of characters just read */

if(len <= 0)

printf("Implausible length %d requested!\n", len);

ist = 0;

p_buf[0] = 0;

do

{

rest = len - ist;

n = read(sock, &p_buf[ist], rest);

if(n == 0)

{

perror("Connection in read_sock closed!");

return(0); /* Connection has been closed */

}

else if(n < 0)

{

perror("Read in read_sock failed!");

return(0);

}

ist = ist + n;

} while (ist < len);

return(ist);

}

and function ng_recdata:

int ng_recdata(

int sock, /* Socket descriptor */

char **pp_ret /* Returned data */

18

)

{

int l0, len; /* Length of message */

char *p_buf; /* Intermediate storage */

int n,ist; /* Counters */

len = 0;

p_buf = NULL;

l0 = 0;

n = read_sock(sock, (char *) &l0, sizeof(l0));

if(n == sizeof(l0))

{

/*----- We got something -----*/

len = ntohl(l0);

if(len < 0 || len >= _MAX_TCP_BUF_ - 1)

printf("Message l0 = 0x%x length = %d has illegal value!\n",

l0, len)

if(len > 0)

{

p_buf = malloc(len + 1);

ist = read_sock(sock, p_buf, len);

if (ist != len)

{

printf("Got only %d from %d bytes!\n", ist, len);

len = 1;

free(p_buf);

p_buf = malloc(len + 1);

p_buf[0] = _V_MESS_ABORT_;

p_buf[1] = 0;

}

else

{

/*----- A normal message -----*/

p_buf[ist] = 0;

}

}

}

else if(n == 0)

{

/*----- The other side vanished! -----*/

len = 1;

p_buf = malloc(len + 1);

p_buf[0] = _V_MESS_ABORT_;

p_buf[1] = 0;

}

19

else

{

printf("strange data n = %d l0 = %d 0x%x len = %d!\n",

n, l0, l0, len):

}

*pp_ret = p_buf;

return(len);

}

4 Miscellaneous

4.1 Revision history

0.42: Changed return of position of xyz-table to letter 'x'.
Changed return of temperature sensor to 'S'.

0.43: Fixed a few bugs, especially in section 2.1.

0.44: Added comment-quali�er in section 2.4.5, added command 'f ' with
section 2.3.6,

0.45: bug-�x: added reference 'e' in section 2.1, added reference 'y' in
section 2.1, changed command syntax of 'x' (2.4.6), removed the
command 'z' because it can be replaced with functionality of 'x'
(2.4.6)

20

	General setup
	The commands specification
	Quick-list of all commands and return-parameters
	Commands which can be sent to the ng_biopro-software
	Possible return commands received from the ng_biopro-software

	General interface-commands and utility functions
	'c' (0x63) - Close a session
	'd' (0x64) - List all pins available in the design
	'I' (0x49) - get information on the status of shell-script execution
	'L' (0x4c) - extract a list of names
	'l' (0x6c) - list a sensors-data
	'm' (0x6d) - list all measurement bodies
	'o' (0x6f) - Open a session
	'q' (0x71) or 'Q' (0x51) - Abort a session
	'r' (0x72) - Get a full report on actions taken /* not yet implemented */
	's' (0x73) - get the state of the system
	't' (0x74) - Execute a test program /* Not yet implemented */
	'v' (0x76) - Update design-window (let the experimenter staying informed)
	'Y' (0x59) - extract a list of known cycles /* not yet implemented */

	Action commands used for controlling the experiments
	'B' (0x42) - Start (begin) a predefined cycle /* not yet implemented */
	'E' (0x45) - Stop (end) a predefined running cycle /* not yet implemented */
	'G' (0x47) - Get status of a predefined cycle /* not yet implemented */
	'S' (0x53) - Synchronize to an existing event or cycle /* not yet implemented */
	'e' (0x65) - Apply a certain potential to an electrode
	'f' (0x66) - set a filter-wheel to a certain position
	'g' (0x67) - get a value of a sensor
	'i' (0x69) - Fetch a single camera image
	'u' (0x75) - Control the pumps (start, stop etc.)

	Specifying hardware details and parameters
	'C' (0x43) - Define camera parameters
	'T' (0x54) - Set temperature
	'a' (0x61) - Set AOTF or light-source intensity
	'n' (0x6e) - Set norm-duty, active-duty and reference-cycle
	'p' (0x70) - Define new pump-parameters
	'x' (0x78) - Move the xy-table to a certain position
	'y' (0x79) - Move the xy-table and z-stage to a predefined position
	'z' (0x7a) - Set position of z-stage

	Low level communication
	Includes
	Sending data
	Receiving data

	Miscellaneous
	Revision history

