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Preface 
 
These lecture notes have been developed during the past eight years in connection with the 
course Information Theory for Complex Systems in the International Masters Programme in 
Complex Adaptive Systems offered at Chalmers since year 2000. The basis for the lecture 
notes is research done together with my colleague Karl-Erik Eriksson during the 1980’s1. The 
past four years, new efforts have been put into the reasearch, primarily dealing with 
information theory for pattern forming systems. This research has been supported by two 
European projects: PACE (Programmable Artificial Cell Evolution), a European Integrated 
Project in the EU FP6-IST-FET Complex Systems Initiative, and by EMBIO (Emergent 
Organisation in Complex Biomolecular Systems) under EU FP6. 
 
June 30, 2008, 
 
Kristian Lindgren

                                                
1 The information-theoretic research was published in a book: Structure, Context, Complexity, Organization 
(Eriksson, Lindgren and Månsson; World Scientific, Singapore, 1987). 
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1 Introduction 
 
The term “complex systems” has become a unifying concept for research and studies of large 
multi-component systems in many disciplines like physics, chemistry, biology, social science, 
computer science, economics and geography. The fact that systems composed of a large 
number of simple components can exhibit complex phenomena is exemplified in all these 
areas: the second law of thermodynamics (as a statistical result of large physical systems), 
self-organising systems (in the form of chemical reaction-diffusion systems), neural networks, 
evolution of cooperation, cellular automata (as an example of an abstract computational class 
of systems), economic systems of interacting trading agents, urban growth and traffic 
systems. During the past two decades the area of complex systems has grown tremendously, 
leading to a large number of scientific journals. An important factor has been the fast 
development of computers, allowing for cheap and powerful experimental laboratories of 
complex systems models.  
 
A complex systems usually involves a large number of components. These components may 
be simple, both in terms of their internal characteristics and in the way they interact. Still, 
when the system is observed over longer time and length scales, there may be phenomena that 
are not easily understood in terms of the simple components and their interactions. 
 
There is no universal definition of a complex system, but there are several features that 
researchers usually consider, like those mentioned above, when they say that a system is 
complex. One important scientific question is whether these and other characteristics of the 
systems can be quantified. This is one of the aims with this book – to provide a set of tools 
that can be used to give a quantitative description of a complex system for a variety of 
different types of systems.  
 
In order to analyse systems composed of many components, statistical methods serve as 
important tools. Within physics, this approach is taken in statistical mechanics. Information 
theory is a branch of probability theory that has a mathematical basis that is equivalent to 
foundations of statistical mechanics, and information theory also provides concepts and 
methods that are useful in order to analyse structure, disorder, randomness, etc in models of 
complex systems. 
 
Information-theoretic concepts can be applied on the macro-level of a system, for example, in 
order to describe the spatial structure formed in a chemical self-organising system. The 
connection between information theory and statistical mechanics makes it possible to relate 
such an analysis to the thermodynamical properties and limitations of the system. 
 
Information theory may also be applied on the micro-level in physical (and other) systems, for 
example in spin system models and other more abstract models for statistical mechanics. In 
this lecture series we shall show and illustrate how information-theoretic quantities can be 
related to statistical mechanics and thermodynamics properties, and in this way we may 
illustrate, in an information-theoretic perspective, complex phenomena like the second law of 
thermodynamics. 
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The concept of information has many meanings. For a historical survey and a discussion of its 
use in different scientific disciplines, see (Capurro and Hjørland, 2003)2. During the 20th 
century information has often been associated with knowledge, or transmission of knowledge. 
The introduction of information as a quantity in science and engineering was associated with 
the development of communication technology. Harry Nyquist and Ralph Hartley were 
pioneers in the 1920’s and they published papers in the context of telegraph speed and 
“information” transmission, offering the first quantitative definition of information. Their 
ideas were based on the observation that such a quantitative measure should be proportional 
to the logarithm of the number of choices or possibilities there is for the message to be sent. 
 
This basic quantity was then generalised by Claude Shannon and Warren Weaver in 1947 
when they presented the information theory that serves as the basis for the field today. This 
generalisation is based on a probabilistic or statistical description of the system under study. 
The basic concepts will be discussed in detail in Chapter 2. 
 
It should be noted that the information concept that is presented in this book is a very specific 
one, related to a probabilistic description of the system that is studied or related to how such a 
description is changed when the knowledge about the system is changed. This means that 
what is quantified is related to the description of the system rather than the system itself. One 
can choose a description that hides a lot of detail and in that case may get a different 
information quantity compared to the fully described system. 
 
Another point that needs to be stressed is that the information we consider has no direct 
connection to meaning. This is stated in Shannon’s first paper presenting the theory (Shannon 
1948): 

 “... the fundamental problem of communication is that of reproducing at one point either 
exactly or approximately a message selected at another point. Frequently the messages 
have meaning; that is they refer to or are correlated according to some system with certain 
physical or conceptual entities. These semantic aspects of communication are irrelevant 
to the engineering problem. The significant aspect is that the actual message is one 
selected from a set of possible messages.” 

 
The book is organised as follows. In Chapter 2 the basic concepts in information theory is 
presented along with the maximum entropy principle. Chapter 3 presents the application of 
the concept to symbol sequences, or, more general, lattice systems in one or more dimensions. 
In Chapter 4 this is applied to the simple class of discrete dynamical system called Cellular 
Automata (CA). Information theory provides several tools in which the dynamics and the 
patterns generated can be studied. We will primarily focus on one-dimensional CA using the 
information theory for symbol sequences. In Chapter 5, some connections between the 
information-theoretic quantities and physics (statistical mechanics and thermodynamics) is 
presented. This relation makes it possible to connect some of the information-theoretic 
quantities describing a system with the thermodynamic constraints that put constraints on the 
dynamics of the system.  

                                                
2 Online material available at http://www.capurro.de/infoconcept.html. 
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To be able to analyse spatially extended patterns in continues space, we develop geometric 
information theory in Chapter 6. These concepts can, for example, be applied to images to 
identify at what length scales and at what positions information is located. This also includes 
applications to fractal patterns and the concept of dimension. In Chapter 7 the geometric 
information theory is applied to pattern formation in chemical system, where the system is 
described as a set of concentration profiles for the different chemicals involved. We derive a 
continuity equation for information that describes how free energy that drives the pattern 
formation process flows into the system and is aggregated at certain positions and length scale 
when information in the chemical pattern is built up. In Chapter 8 we give an information-
theoretic perspective on chaotic dynamical systems. We show how the sensitivity to small 
fluctuations can be seen as an information flow from “micro” to “macro”. 
 
Each Chapter contains a set of problems of varying degree of difficulty. Many of these have 
been taken from exam problems given during the history of the course that started in 1990. 
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2 Information theory  
 
A quantitative measure of information was presented in Bell System Technical Journal 
already 1928 by Ralph Hartley, but even before that Harry Nyquist had brought up the issue 
in the same journal in 1924. Hartley showed, in his paper on signal transmission, that the 
information content in a message consisting of n characters, each of them chosen from an 
alphabet of N different symbols, should be proportional to n log N. The generalisation of this 
was not done until 1948, when Shannon presented the information theory still used today. The 
concepts of information was after that also applied to other areas in science, including 
physics, see, e.g., (Brillouin, 1956) and (Jaynes, 1957), which will be discussed in a later 
Chapter. 
 

2.1 Basic concepts 
 
Information is usually quantified in units of bits, "binary units", which is the amount of 
information that can be stored in a single binary symbol. In information theory this quantity is 
defined in terms of probabilities. When a person makes an observation, for example reads the 
next character in a text or takes a look at the watch, information is received. How much 
information that is gained from the observation depends on how unexpected the event was. 
For an event that has an a priori probability p, the corresponding information I(p) is defined 
 

 I( p) = log
1

p
 (2.1)  

 
This definition is a generalisation of Hartley’s information quantity in that it distinguishes 
between events of different probability. If the event is an observation of one character drawn 
from an alphabet consisting of N symbols, where all are assumed to be equally probable, then 
the probability is p = 1/N and the information is I = log N. Here we have used the logarithm of 
base 2, which then results in the unit bit. Later on we will switch to base e, denoting the 
logarithm “ln”, resulting in the natural information unit, usually called "nat". 
 
Using the definition we see that an unexpected or less probable event (small p) corresponds to 
a high information value, but if we are told something that we already know (p = 1) the 
received information is zero.  
 
When one does not have full information on the state of a certain system, one may associate a 
probability to each possible state. This means that the state of system is described by a 
probability distribution. This is one of the basic ideas in statistical mechanics, where one does 
not know the exact state (microstate) of a physical system but describes it as a probability 
distribution (macrostate) over the possible microstates. Such a probability distribution is 
denoted 
 
 P = pi{ }i=1

n

 (2.2) 
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where pi denotes the probability for state i, and n is the number of possible states the system 
can take. The probabilities should be non-negative and normalised 
 
 pi ! 0  (2.3) 

 pi
i=1

n

! = 1  (2.4) 

 
When one observes a system and learns about its exact state the amount of gained information 
depends on which state is observed, as is stated in Eq. (2.1). Therefore one can characterise 
the system by the average or expected information one gets when the system is observed. 
This expectation value is calculated on the basis of the probability distribution P that 
describes the system, and the expected information is called the entropy of the (unobserved) 
system: 
 

 S[P] = log
1

pi i

= pi log
1

pii=1

n

!  . (2.5) 

 
(We define 0·log 0 = 0.) This entropy is usually called the Shannon entropy. It is clear that 
0 ≤ S[P] ≤ log n. The entropy is the expected gain of information when we observe a system 
characterised by a probability distribution P over its possible states. One can also say that the 
entropy quantifies the lack of knowledge of the system (before the exact state of the system is 
observed). Sometimes this is also called the disorder of the system. This interpretation may 
become more clear when we discuss entropies in symbol sequences in a later chapter. 
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Figure 2.1.  For a system with two possible states (n = 2), with the probabilities p and 1–p, 
the entropy S(p), or the lack of knowledge, is at maximum when both states are equally 
probable (p = 1/2). This means that we have no clue on which state we will find the system in 
when observing it. If we know that the system is in a certain state (p = 0 or p = 1), then the 
entropy is zero. 

p 

S 
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2.1.1 Entropy and coding – an extended example 
Consider a stochastic process that generates randomly sequences of the symbols ‘a’, ‘b’, ‘c’, 
and ‘d’, for example ‘bcaabada…’. Suppose, to start with, that it is unknown with which 
probabilities the symbols are generated. Then the best guess is to assign probabilities 1/4 for 
each of the events, and that subsequent symbols are independent. The information gained in 
any of the possible observations of a single symbol is then log 4 = 2 (bits). This seems 
reasonable since we can simply code the four symbols with the binary code words ‘00’, ‘01’, 
‘10’, and ‘11’, respectively. 
 
Suppose again that symbols are generated independently of each other but that they are 
generated by the probabilities p(a) = 1/2, p(b) = 1/4, p(c) = 1/8, and , p(d) = 1/8, and that this 
is known a priori by the observer.  
 
When observing a symbol, the amount of information one gets, according to Eq. (2.1), 
depends on the symbol. When observing an ‘a’ we get 1 bit, but a ‘d’ would give us 3 bits. 
The expectation value of the information we get from an observation is the weighted average 
of the information from the four possible events, which is the entropy of Eq. (2.5),  
 
 S = 1/2  +  1/4 · 2  +  1/8 · 3  +  1/8 · 3  =  7/4. 
 
We find that the entropy is now reduced, since we have some prior knowledge on the 
probabilities with which symbols occur. This also means that, by making a better code 
compared to the trivial one mentioned above, one could compress a message or a sequence of 
symbols in which the frequencies follow these probabilities. If we for example use the code 
words ‘0’ for a, ‘10’ for b, ‘110’ for c, and ‘111’ for d, we note that the average code word 
length decreases from 2 to S above. The knowledge of the frequencies of the four symbols has 
allowed us to compress the message from 2 bits per symbol to 1.75 bits per symbol. The trick 
lies in the fact that we have used a code word length (bits in the code word) that equals to the 
information gained if the corresponding symbol is observed. So, common symbols that carry 
little information should be given short code words and vice versa. 
 

2.1.2 Entropy as an additive quantity 
The entropy of a system composed by independent parts equals the sum of the entropies of 
the parts. The independency means that the probability for a certain microstate of the whole 
system equals the product of the probabilities of the corresponding microstates of the parts. 
Assume that the system consists of two subsystems, characterised by the probability 
distributions  
 
 n

iiqQ 1}{ ==   and  m

jjrR 1}{ ==  , (2.6) 
 
with qi and rj representing probabilities for states i and j in the then the two subsystems, 
respectively. whole system is characterised by 
 
 mn

jiji rqP
,

1,1}{ ===  . (2.7) 
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The entropy can be written 
 

 

! 

S[P] = qi rj log
1

qi rjj=1

m

"
i=1

n

" = qi log
1

qi
+ rj log

1

rjj=1

m

"
i=1

n

" = S[Q]+ S[R]. (2.8) 

 
Here we have used the normalisation Σi qi = Σj rj = 1. 
 

2.1.3 Relative information, relative entropy, or Kullback information 
Often when we make an observation we do not receive full information of the system. The 
exact microstate may not be revealed, but based on the observation, we may replace our 
original, a priori, distribution P(0) with a new one P. We here assume that whenever a 
microstate i is assumed to be impossible in the a priori situation,     pi

(0)
= 0 , then this state is 

also impossible in the new probability distribution,     pi
= 0 .  

 
In order to quantify how much information we have gained from the observation, we calculate 
the decrease in our lack of knowledge of the system. Before the observation, we thought that 
    pi

(0)  described the probabilities, but when calculating the expectation value of that lack of 
knowledge before observation S(0), we should use the new probabilities for the weights, 
 

 

! 

S
(0)

= pi
i=1

n

" log
1

pi
(0)

 ,  (2.9) 

 
while the lack of knowledge after the observation is the ordinary entropy S, as in Eq. (2.5). 
The information gained in the observation, the Kullback information K[P(0); P],  when the a 
priori distribution P(0) is replaced by the new distribution P, is then 
 

 

! 

K P
(0);P[ ] = S(0) " S = pi

i=1

n

# log
1

pi
(0)
" pi

i=1

n

# log
1

pi
= pi

i=1

n

# log
pi

pi
(0)

. (2.10) 

 
(Here we define 0·log(0/0) = 0.) This quantity is also called the relative information or the 
relative entropy between the distributions P(0) and P. This quantity fulfils the inequality 
 
 

! 

K P
(0)
;P[ ] " 0,  (2.11) 

 
with equality only when the two distributions are identical. 
 
Proof: Consider the function g(x) = x – 1 – ln x ≥ 0. By adding and subtracting 1, the 
expression for the contrast may be rewritten as an average over g(    pi

(0)
/ p

i
), after transforming 

from log of base 2 to base e,  
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! 

K P
(0)
;P[ ] =

1

ln2
pi

i=1

n

" ln
pi

pi
(0)

=

=
1

ln2
pi

pi
(0)

pi
#1# ln

pi
(0)

pi

$ 

% 
& 

' 

( 
) 

i=1

n

" =
1

ln2
pi g

pi
(0)

pi

$ 

% 
& 

' 

( 
) 

i=1

n

" * 0,

 (2.12) 

 
which proves the inequality. It is also clear that equality requires that     pi

(0)
= p

i
 for all i.  

 

2.1.4 The concavity of entropy 
We shall now use inequality (2.12) to prove that the entropy is a concave function3. For the 
entropy function this means that, if P and Q are two probability distributions (both over n 
possible states), then the entropy of any weighted average of these is larger than the 
corresponding weighted average of their respective entropies, 
 
     S[a !P + (1 " a) !Q] # a ! S[P] + (1 " a) ! S[Q] , 
 
where a and (1–a) are the weight factors (0 ≤ a ≤ 1). The probabilities in the distributions are 
denoted pi and qi, respectively. The proof is 
 

 

! 

S[a " P + (1# a) "Q]# a " S[P]+ (1# a) " S[Q]( ) =

= (api + (1# a)qi)log
1

api + (1# a)qii=1

n

$ # api log
1

api
+ (1# a)qi log

1

(1# a)qi

% 

& 
' 

( 

) 
* 

i=1

n

$ =

= a pi log
pi

api + (1# a)qii=1

n

$ + (1# a) qi log
qi

api + (1# a)qii=1

n

$ =

= aK[a " P + (1# a) "Q;P]+ (1# a)K[a " P + (1# a) "Q;Q] + 0.

 

 
The non-negative property of the Kullback information will be used in several proofs for 
inequalities involving different entropy quantities in later chapters. 
 

2.2 Maximum entropy formalism 
 
Even if we do not know exactly the state (microstate) of a certain system, we may have some 
information on its state. We could, for example, have knowledge about the average energy or 
number of particles. Statistical physics is based on the idea that, with such limited information 
on the state of the system, we make an estimate of the probabilities for the possible 
microstates. Usually, there are, though, an infinite number of possible probability 
distributions that are consistent with the known properties of the system in study. The 
question is then: how should we choose the probability distribution describing our system? 
 
Here it is reasonable to use the concept of entropy, since it can be interpreted as our lack of 
information on the state of the system. When assigning a probability distribution for the 
                                                
3 A function f(x) is concave if f(ax + (1–a)y) ≥ a f(x) + (1–a) f(y), for all 0 ≤ a ≤ 1. 
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system, we should not use a probability distribution that represent more knowledge than what 
we already have. For example, when assigning probabilities for the outcome of a through of a 
six-sided dice, we say that all probabilities are equal and 1/6. This corresponds to the situation 
of maximum entropy, or maximum lack of knowledge. In general we may have some 
knowledge about the system that implies that this maximum entropy level is not correct. 
There may be constraints that our knowledge implies which leads to limitations on to how the 
different probabilities can be varied.  
 
Therefore, we choose, among the probability distributions that are consistent with the known 
system properties, the distribution that maximises the entropy. The probability distribution is 
in this way derived from a maximisation problem with constraints. This method assures that 
we do not include any more knowledge, in the description of the system, than we already 
know. This is the basic idea behind the maximum entropy principle, which also can be called 
the principle of minimal bias. 
 
Let us assume that we shall derive a probability distribution P = {pi} describing a system for 
which we know that the following r averages (or expectation values) hold, 
 

 

! 

fk = pi fk (i)
i=1

n

" = Fk        (k =1,...,r). 

 
This means that we have r functions fk(i), k = 1,…, r,  of the microstates i, and that we know 
the expectation values of these, Fk. Such a function could, for example, give the energy of 
microstate i. The maximum entropy principle now states that we should choose the 
probability distribution that maximises the entropy under these conditions: 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Choose 

! 

P = pi{ }
i=1

n
, so that 

 the entropy 

! 

S[P] = pi ln
1

pii=1

n

"  is maximised, 

 subject to constraints 

! 

fk = Fk      (k =1,...,r), 

 and the normalisation condition, 

! 

pi
i=1

n

" =1. 
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We solve this general problem by using the Lagrange formalism4. Therefore, we define the 
Lagrange function 
 

 
  

! 

L p
1
,K,pn ,"

1
,K,"r,µ( ) = S[P] + "k Fk # pi fk (i)

i=1

n

$
% 

& 
' 

( 

) 
* 

k=1

r

$ + µ #1( ) 1# pi
i=1

n

$
% 

& 
' 

( 

) 
*  , (2.13) 

 
where we have introduced Lagrange multipliers λk, for the r constraints, and (µ – 1) for the 
normalisation constraint. (Here we have chosen µ – 1, instead of just µ, because it makes the 
expressions in the derivation a little simpler.) The optimisation problem is now solved by 
finding the P, λk, and µ for which partial derivatives with respect to L is 0. (Note that the 
constraints are equivalent to the conditions that the partial derivatives of L with respect to the 
Lagrange variables are 0.) 
 
Derivation of L with respect to pj results in 
 

 

! 

"
#L

#p j

= ln p j +1+ $k fk ( j)
k=1

r

% + µ "1 , (2.14) 

 
which together with the optimisation requirement 0/ =!! jpL  gives 
 

 

! 

p j = exp "µ " #k fk ( j)
k=1

r

$
% 

& 
' 

( 

) 
* = exp "µ " # + f( j)( ) , (2.15) 

 
where we have introduced a vector notation for the Lagrange variables, λ = (λ1,…, λr), and 
f (j) = (f1(j),…, fr(j)). A probability distribution of this form is called a Gibbs distribution. The 
values on the Lagrangian variables can be derived from the constraints. Note that the 
distribution automatically fulfils pj ≥ 0. The normalisation condition Σj pj = 1 determines µ as 
a function of λ,  
 
 

! 

µ(") = lnZ(")  , (2.16) 
 
where Z(λ) denotes the state sum,  
 

 

! 

Z(") = exp(#
j=1

n

$ " % f( j)). (2.17) 

 
Finally, the Lagrangian variables λ are determined by the other constraints, which can be 
expressed as 
 

                                                
4 This means that we add, to the objective function, the constraints as separate terms (each being 0 when the 
constraint is fulfilled), each multiplied by a Lagrangian variable. The new objective function L is a function of 
all original variables and in addition one variable each for the different constraints. The maximum of the original 
constrained problem corresponds to the maximum of the unconstrained Lagrange function L, which is typically 
easier to solve. 
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! 

"µ(#)

"#
= $F  , (2.18) 

 
where F = (F1,…, Fr). The maximum entropy value can be expressed in terms of the 
Lagrange variables as 
 
 

! 

S P[ ] = µ + " #F  . (2.19) 
 
(This derivation is left as an exercise.) In the next Section, we illustrate the formalism with an 
example of a simple Gibbs distribution in physics.  
 

2.2.1 The Bose-Einstein distribution 
Suppose that we have a system composed of a number of particles, where the unknown 
microstate of the system is described by the exact number of particles n (n = 0, 1, 2,…). Let 
us assume that we gained the knowledge that the expected number of particles in this type of 
system is N, for example from measurements on a large number of such system. If this is all 
we know, the only constraint apart from normalisation we have is that the expected number of 
particles equals N. If pn is the probability for the system being composed of n particles, then 
this constraint can be written 
 

 

! 

pnn
n= 0

"

# = N . (2.20) 

 
Let λ be the Lagrange variable for this constraint and µ the variable for the normalisation. 
Then the state sum can be written 
 

 

! 

Z(") = exp(µ(")) = exp(#"n)
n= 0

$

% =
1

1# e#"
. (2.21) 

 
By using Eq. (2.18), we find that 
 

 

! 

"

"#
ln

1

1$ e
$#

= $
e
$#

1$ e
$#

= $N , (2.22) 

 
which results in  
 

 

! 

" = ln 1+
1

N

# 

$ 
% 

& 

' 
(  , (2.23) 

 
 

! 

µ = ln N +1( )  . (2.24) 
 
The probability distribution is then recognised as the Bose-Einstein distribution, 
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! 

pn =
N

n

(N +1)
n+1

 . (2.25) 

 
 

2.3 Generalisation of entropies to a continuous state-space 
 
The information-theoretic terminology can be generalised to a continuous state-space. Then 
we assume that we have a probability density p(x) over this state space, and suppose that 
x = (x1,…, xD) is a vector in a D-dimensional Euclidean space. This could, for example, mean 
that we do not know the exact position of a particle, but that we describe the position of the 
particle as a probability density over this space. (To be complete, we should also introduce a 
density of states function, but here we assume that to be identical to 1, and therefore we omit 
it in the expressions5.) The probability to find the system in a certain volume V is then written 
 
 

! 

P(V ) = dx p(x)
V

" ,  (2.26) 

 
and the normalisation of the probability requires 
 
 

! 

dx p(x)
V

" =1. (2.27) 

 
Furthermore, 
 
 

! 

0 " p(x) <#. (2.28) 
 
In analogy with Eq. (2.5), we can now define the entropy S as 
 

 

! 

S[p] = dx p(x)ln
1

p(x)
" . (2.29) 

 
Like in the discrete case, we can also define a Kullback information or relative information, 
assuming an a priori probability density p(0)(x), 
 

 

! 

K p
(0)
;p[ ] = dx p(x)ln

p(x)

p
(0)
(x)

"  . (2.30) 

 
It is assumed that p(x) = 0 whenever p(0)(x) = 0, and we define 0·ln(0/0) = 0. One can show 
that this Kullback information is non-negative, as in the discrete case. This does not hold for 
the entropy in Eq. (2.29), though. 
 

                                                
5 The choice of the density of states function v(x) affects the normalisation of the probability density, 
∫dx v(x)p(x) = 1, and one needs to be careful if one makes variable transformations of the state-space variable. 
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In later Chapters, we shall use a continuous state-space in the analysis of, for example, spatial 
structure in chemical systems, in which we represent the spatial concentration distributions of 
chemical components by probability densities. 
 

2.4 Exercises 
 
2.1 Suppose you are to measure the voltage between two points in a circuit, and that you 

know the value to be anywhere in the range from 0 to 0.5 V (no value is more likely 
than any other). At your disposal is a Volt meter, showing two significant digits in that 
range. What is your Kullback information when you have read the result? 

 
2.2 What is the Kullback information between two Gaussian distributions, with widths b1 

and b2, respectively? Show that this quantity is always non-negative. 
 
2.3 For a mechanical component to fit in a certain technical system, it is required that its 

length x fulfils L – d < x < L + d. In the production of these components the resulting 
lengths are normal (Gaussian) distributed, with an average of L and a standard deviation 
of σ = d/2. If we take a new (not yet tested) component and find that it does not fulfil 
the requirements, what is the Kullback information? 

 The normal distribution has the density function f (x) =
1

! 2"
exp(#

(x # L)2

2!
2 ) . 

 
2.4 A two-step observation.  The expected information gain you get when observing the 

result of throwing a six-sided dice, does not change if you make the observation in two 
steps. If you first learn whether the result is odd or even, and after that learn the exact 
outcome, the expectation value of the sum of these two information gains is the same as 
the expected information gain of the direct observation. Show that this results does not 
depend on the assumption that all outcomes are equally probable, i.e., that this holds for 
any probability distribution over the outcomes of the dice. 

 
2.5 A system is described by a probability distribution over three states, characterised by 

the energies 0, 1, and 2, respectively. If the expectation value of the energy is 1, what 
probability distribution should we assign according to the maximum entropy principle? 

 
2.6 Consider a radioactive atom with decay constant λ, so that the probability for the atom 

to remain after time t is e-λt. At time 0 the atom has not decayed. After a certain time t = 
1/λ the atom is observed again, and it is found to remain in its original state. What is the 
Kullback information from that observation? 

 
 Now we wait until t = 2/λ and observe the atom again. This time it has decayed. What is 

our information gain in this observation? 
 
2.7 Consider again, as in the previous problem, a radioactive atom with decay constant λ. 

How should we plan to time our measurements if we would like to maximise our 
expected information gain per observation? 
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2.8 A system is composed by n subsystems that each has two possible states, kj = 0, 1 
(j=1,…, n), which gives 2n states for the whole system. Let K = ∑j kj, and assume that 
we know that the average of this function is <K> =na, where 0< a < 1. What is a 
microstate in this system? What probability distribution over microstates should we 
choose to describe the system? 

 
2.9 What is the entropy of a Gaussian distribution with a width (standard deviation) b ? 

How can this result be interpreted? 
 
2.10 Monty Hall Problem. Behind 1 of 3 closed doors is a prize. You pick one of the doors. 

Monty opens one of the other doors behind which he knows there is no prize. You are 
given the choice of sticking with your choice or switching to the other unopened door. 
Should you switch? What are your chances of winning if you do? 

 
 Analyse this in information-theoretic terms. What is your initial uncertainty? How much 

information do you get when Monty opens a door? How does your probabilistic 
description change? What is the Kullback information between your a priori knowledge 
and the situation after Monty has opened the door? 

 
2.11 Balance information. Suppose that you have four balls that all look the same, two of 

equal heavier weight and two of equal lighter weight. Assuming this knowledge, what is 
the uncertainty of the system. How many measurements using a balance would 
theoretically be needed in order to sort out which are the heavier and which are the 
lighter ones? Is there a procedure that accomplishes this? 

 
2.12 Weighing balls. You have 12 balls, all have the same weight except one that deviates. 

By using a balance three times you should be able to find the deviating ball, and tell 
whether it is lighter or heavier. The task is to find this procedure. 

 To get started, you may consider the more easy problem, in which you have nine balls, 
of which you know that one is heavier but the others identical. Show how to find the 
heavy one in two measurements using a balance! 

 

 
2.13 a) Use an information-theoretic approach to show that this is not always possible for 14 

balls. 
 b) Show that this is not always possible for 13 balls. 
 c) Tricky: Construct a procedure that finds one ball out of 39 in three balance 

measurements 
 

Example of balance; you may have any number 
of balls on each side, and you may assume the 
weighing to be perfect (equal weights on both 
sides gives a balanced result). 
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2.14 Mathematical requirements for entropy. The quantity S[P] that we have used for 
entropy of a distribution P = {p1, p2, …, pn} over microstates (1, 2, …, n) is the only 
quantity fulfilling the following four conditions: (i) S is symmetric with respect to the 
probabilities, (ii) S is a continuous function of the probabilities, (iii) The information 
obtained when one gets to know the outcome of two equally probable events is 1 bit, 
and finally (iv): 

 The expected gain of information is the same for (I) an immediate observation of the 
microstate as for (II) a two step observation in which one distinguishes between, say, 
state 1 and state 2 only if a first observation rejects the other states. 

 
 Express the last condition (iv) in mathematical terms, i.e., express the entropy S as a 

sum of two entropies from two measurements as described in (II). Show that this 
expression holds for the Shannon definition of entropy: S = Σ pk log(1/ pk ). 

 
 
2.15 Information loss by aggregation. Consider a picture composed of black and white 

dots, or pixels, in a two-dimensional square lattice of size NxN. At the finest resolution, 
we see exactly where are the pixels and we have “full” information. Assume that the 
resolution is made worse (by a factor of two in length scale) so that instead of seeing 
single pixels, we can only distinguish (N/2)x(N/2) cells, where each cell contains the 
aggregated information from 2x2 = 4 underlying pixels. At the aggregated level, the 
cells can take the (observed) “grey-scale” values 0, 1, 2, 3, or 4, corresponding to the 
number of black pixels that the cell was formed from. 

 
This type of aggregation leads to a loss of information. The loss may vary (locally) 
depending on the local structure (local densities). Discuss briefly how this works.  

 
 If one assumes that the original picture is completely “random”, with equal probabilities 

for black and white pixels, how much information (entropy) do we loose in average (per 
original pixel) when we aggregate? 

 
 
2.16 Maximum entropy of particle velocities. Consider a system of uncorrelated particles 

moving on a one-dimensional lattice. Each particle can have velocity –2, –1, 0, +1, or 
+2. The only knowledge you have is that the average velocity is 0 and that the average 
square velocity is 1, i.e., < v > = 0 and < v2 > = 1. Use the maximum entropy principle 
to determine the probability distribution over the different velocities. 
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3 Information theory for lattice systems 
 
Information theory was developed for the application to signals or sequences of symbols. 
Suppose that we want to examine the information content in a symbol sequence, composed of 
the characters "0" and "1". The information carried per symbol a priori is 1 bit. This 
information quantity can be decomposed in two terms, an entropy term that quantifies the 
disorder of the system and another information quantity that quantifies the order in the 
system. The ordered information is usually called the redundancy (superfluous information) 
of the text or symbol sequence. Order here may, for example, mean that there is a higher 
chance to make a correct guess of the next character, if we may take into account preceding 
characters. This order depends on correlations between symbols in the sequence. The 
disordered information is the entropy of the symbol sequence, and it quantifies the uncertainty 
that remains (in average), when all correlations have been taken into account before observing 
the next character. Thus this is an average uncertainty (or "lack-of knowledge") measure per 
character in the sequence. It is in the entropy part of the text where we can transmit 
information between author and reader. 
 
Analysis of written texts has for a long time been a popular application of information-
theoretic concepts, not the least because of the possibilities to automatically generate texts. 
Randomly generated texts, based on correlation statistics, were present already in Shannon’s 
original paper from 1948. As we have discussed above, the redundancy in a symbol sequence 
corresponds to the ordered part of the information content. Here, “order” means that certain 
characters are more common than others, or that some characters more often follow certain 
sequences of characters. This is especially the case when there are strong correlations in the 
text. The disordered information, the entropy, corresponds to the remaining uncertainty, when 
one is guessing the next character in the text, taking into account all correlations. A language 
with 32 characters (including “space” and some punctuation marks, but without using capital 
letters) has a maximum entropy value (when correlations are not included) per character that 
is log 32, or 5 bits, but the real entropy is usually much lower. In English about 4 bits are 
redundant, and only 1 bit is entropy. 
 
How correlations contribute to the structure of the text can be illustrated by random 
generation of texts, using different correlation lengths. First one needs a large text (or a 
number of texts), from which statistics is collected on sequences of characters. The statistics 
from about a thousand lines of poetry may be sufficient to make the computer seem like an 
author. If the source for the statistics is only one text written by one author the generated text 
will not only show the characteristics of the language used, but also the characteristics of the 
author, as well as features of the story chosen.  
 
Based on statistics from a source text, we form conditional probabilities, p(xnx1,…,xn–1), 
expressing the probability for the next character given the n – 1 preceding ones. Using these 
probabilities, we randomly generate characters, one by one. The longer correlation one 
decides to include (larger n), the longer preceding sequence is taken into account when 
calculating the probability. In the following six examples we go from a generated text using 
only density information to texts with correlations over block lengths two to six: 
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1: Tdory d neAeeeko,hs wieadad  ittid  eIa c i  lodhign un a a svmb  i ee' kwrdmn. 
2: Le hoin. whan theoaromies out thengachilathedrid be we frergied ate k y wee ' e the sle! 

se at te thenegeplid whe tly titou hinyougea g l fo nd 
3: 'Weed. Thed to dre you and a dennie. A le men eark yous, the sle nown ithe haved saindy. 

If - it to to it dre to gre. I wall much. 'Give th pal yould the it going, youldn't thave away, 
justove mouble so goink steace, 'If take we're do mennie. 

4: I can light,' George tried in you and fire.' 'Nothen it and I want yourse, George some other 
ther. There's if his hand rolledad ther hisky, 'I little amonely we're we're with him the rain. 

5: 'I...I'm not running.' The ranch, work on the time. Do you because you get somethings 
spready told you just him by heat to coloured rabbits. That's going grew it's like a whisky, 
place. 

6: Million mice because it two men we'll sit by the future. We'll steal it. 'Aren't got it. 'About 
the fire slowly hand. 'I want, George,' he asked nervoulsly: 'That's fine. Say it too hard 
forget other. 

 
Already in the case with correlation of two or three, it is quite clear what the language is. 
When correlation is increased, more of the words are correctly generated, and at the length of 
six, one may guess from what story the text is taken. 
 
In the following sections, we present a formalism that can be used to analyse disorder and 
correlations in symbol sequences. We also extend the formalism to two dimensions. In later 
Chapters, we use this formalism to analyse states (in the form of symbol sequences) in the 
time evolution of discrete dynamical systems (cellular automata). In the Chapter on chaotic 
systems, we illustrate how the formalism can be applied to symbol sequences generated by 
dynamical systems in order to characterise the dynamics. 
 

3.1 One-dimensional lattices 
 
Like in the previous Chapter, our definitions on information quantities in symbol sequences 
depend on a probability description of the system. Let us assume that the systems under study 
consists of infinite sequences of symbols, in which each symbol is taken from some finite 
alphabet Λ. Actually, the system is a set of such sequences, an ensemble. We also assume that 
the system is translation invariant, so that the probability for finding a certain finite sequence 
of symbols at a certain position in the system does not depend on the position, but only on 
what other symbols that we may already have observed. In this type of system, we may form 
probability distributions over sets of finite sub-sequences of symbols, one for each length n 
(with n = 1, 2, 3, … ).  
 
We consider symbol sequences that are generated by a stationary stochastic process, which 
implies the translation invariance of the sequence. The system can then be described by an 
infinite sequence of stochastic variables Xk,  
 
 

! 

X = (X
0
,X

1
,X

2
,…), (3.1) 

 
and since it is stationary, probabilities for certain sub-sequences do not depend on position, 
 
 

! 

P(X
1

= x
1
,X

2
= x

2
,…,X

n
= x

n
) = P(X

1+m = x
1
,X

2+m = x
2
,…,X

n+m = x
n
), (3.2) 
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for all n, m, and any symbols xk ∈ Λ. Therefore we can characterise our system by a 
probability distributions Pn over symbol sequences of finite length n,  
 
 

! 

Pn = pn (x1,…,xn ){ }
x1 ,…,xn "#

n      (n  = 1, 2, …), (3.3) 

 
or shorter 
 
 

! 

Pn = pn (" n ){ }
" n #$

n      (n  = 1, 2, …). (3.4) 

 
(We are using x, y, z etc as variables for single symbols and Greek letters σ, α, β etc as 
variables for sequences of symbols.) The probabilities fulfil the general requirements of being 
non-negative and normalised, Eq. (2.3) and (2.4). Furthermore, there are conditions that relate 
probability distributions over lengths n and n + 1, based on the fact that the distribution over 
(n+1)-length sequences includes the distribution over n-length sequences. Summation over 
first or last variable in an (n+1)-length probability results in the corresponding n-length 
probability, 
 
 

! 

pn (x1,…,xn ) = pn+1(x1,…,xn ,xn+1)
xn+1 "#

$  , and (3.5) 

 
 

! 

pn (x1,…,xn ) = pn+1(x0,x1,…,xn )
x0 "#

$  . (3.6) 

 
In the following, we will drop the subscript n of p and in short write p(x1…xn) or p(σn), if it is 
clear which length that is considered.  
 
We are usually assuming that the stochastic process that generates the ensemble of sequences 
is ergodic. This means that, almost always, we can get the right statistics from a single 
(infinitely long) sequence of symbols in the ensemble. In other words: the calculation of an 
average < f > of a function f based on the probabilities p(x1…xn) results in the same as an 
average based on following the individual symbol sequence (s1, s2, s3,…), 
 

 

! 

p(x1,…,xn ) f (x1,…,xn ) = lim
T"#

1

T
f (sk,sk+1,…,sk+n )

k=1

T

$
x1…xn %&

n

$ . (3.7) 

 
The implication of this is that we may consider one outcome of the stochastic process, a 
specific infinite symbols sequence, and that we may make an internal statistical analysis of it 
in order to determine a number of information-theoretic properties. Viewed as a physical 
system, a specific symbol sequence would correspond to a specific microstate. This would 
then open the possibility of discussing entropy and order of a single microstate. In statistical 
physics, this is not the common perspective since one associates the system with the 
macrostate, or the probability distribution over the possible microstates. We shall return to 
this view in the Chapter on physics and information theory. 
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Let us assume that we have an infinite sequence of symbols (or an ensemble of such 
sequences), characterised by probabilities for finite length sub-sequences. Our a priori 
knowledge of the system only reflects that each symbol belongs to a certain alphabet Λ, that 
contains |Λ| = ν different characters. Our initial uncertainty (or lack of knowledge) per symbol 
is then S = log ν. By successively adding probability distributions for sequences of increasing 
length Pn (n=1, 2, …), we may take correlations into account to reduce our uncertainty of the 
next symbol in the sequence. The entropy that still may remain when we include all lengths 
(n→∞) is the Shannon entropy of the symbol sequence, or for short the entropy. In some 
contexts this is called the measure entropy or the entropy rate of the stochastic process (to be 
discussed in the Chapter on chaotic systems). 
 
Before we formalise this discussion, let us consider the following example involving two, 
possibly dependent, stochastic variables X1 and X2. Let us assume that the possible outcomes 
of these are characters belonging to a certain alphabet Λ. First, if we assume that they are 
independent and equally distributed, characterised by probabilities p(x) each, then, according 
to the example under 2.1.2, the total entropy is 
 
     S[X1, X2] = S[X1] + S[X 2] . (3.8) 
 
If there is a correlation (dependence) between X1 and X2, then their combined entropy S[X1X2] 
should be less than S[X1] + S[X2]. Therefore, we can use the following difference as a measure 
of the dependence between the variables — the mutual information I[X1; X2], 
 

  

! 

I[X1;X2] = S[X1]+ S[X2]" S[X1,X2] =

= p(x1)
x1

# log
1

p(x1)
+ p(x2)

x2

# log
1

p(x2)
" p(x1x2)

x1x2

# log
1

p(x1x2)
=

= p(x1x2)
x1x2

# log
p(x1x2)

p(x1)p(x2)
= K[P(X1)P(X2);P(X1X2)] $ 0

 (3.9) 

 
Here we have made use of Eq. (3.5) and (3.6), when transforming the expression into a 
Kullback information. Thus, the mutual information is the information we get when we 
replace the separate distributions P(X1) and P(X2), as the description of the system, with the 
correct joint distribution P(X1 X2). 
 
It is often useful to consider the conditional probability p(x2|x1) which is the probability for a 
certain x2 provided that a certain x1 has been observed, defined by 
 

 

! 

p(x2 | x1) =
p(x1 and x2)

p(x1)
=
p(x1,x2)

p(x1)
. (3.10) 

 
Using this, we can rewrite the mutual information 
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! 

I[X1;X2] = p(x1)
p(x1x2)

p(x1)x1x2

" log
p(x1x2)

p(x1)p(x2)
=

= p(x1)
x1x2

" p(x2 | x1)log
p(x2 | x1)

p(x2)
=

= p(x1)
x1

" K[P(X2);P(X2 | x1)].

 (3.11) 

 
The Kullback information in the last row quantifies the information gained when we replace 
the probability description of X2 in the form of the distribution P(X2) with the conditional 
probability distribution that includes the possible correlation that may exist when we have 
already observed a specific outcome x1 of X1. Then the average over the possible outcomes of 
X1 is calculated. This is also an intuitively reasonable interpretation of the mutual information 
quantity.  
 
The analysis of correlations in symbol sequences builds on how the entropy of n-length 
distributions varies with the length n. The block entropy,  
 

 

! 

Sn = S[Pn ] = p(" n )log
1

p(" n )" n

#  , (3.12) 

 
quantifies the disorder of n-length sub-sequences of the system. This quantity grows with n, 
but if there are correlations, the increase is less than the entropy of an isolated symbol. The 
larger n, the longer correlations can be taken into account, and thus the increase of Sn will be 
smaller for larger n. A qualitative picture of how Sn varies as a function of n is shown in 
Figure 3.1. 

 
 
Figure 3.1. The block entropy Sn is an increasing function of length n. The increase is 
decreasing, ΔSn decreases by n, implying Δ2Sn ≤ 0. This second difference in the block 
entropy can be interpreted as the information in correlations kn over block length n. 
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In order to analyse the information contained in the correlations in the system, we introduce 
the conditional probability of a symbol, given that we have already observed the n–1 
preceding symbols, 
 

 

! 

p(xn | x1…xn"1) =
p(x1…xn"1xn )

p(x1…xn"1)
 . (3.13) 

 
For each possible preceding sequence (x1…xn–1), this is a probability distribution P(•|x1…xn–1) 
over the next symbol xn. The entropy for this distribution is a measure of the difficulty in 
guessing the next symbol (uncertainty of the next symbol), based on the fact that we already 
know the preceding n–1 symbols. Of course, this entropy may vary with the exact preceding 
symbol sequence, and therefore we are interested in the average of this conditional entropy 
 

 

! 

S[P(• | x1…xn"1) = p(x1…xn"1)
x1…xn"1

# p(xn | x1…xn"1)log
1

p(xn | x1…xn"1)xn

# =

= Sn " Sn"1 = $Sn .

 (3.14) 

 
This shows that the average conditional entropy equals the slope of the block entropy Sn as a 
function of length n (see Figure 3.1). If we increase the length of the preceding symbol 
sequence in the conditional probability distribution, we may increase our chances to make a 
better estimate of the probability for the next symbol. This is due to the fact that increasing 
the length of the block includes more correlations in the system, and these correlations can be 
used when guessing the next symbol. The information content in such correlations can be 
derived as follows. 
 

 

 

. . . x x x x 
2 3 n-1 n 

. . . x x x x 
2 3 n-1 n 

x 
1 

 
 
Figure 3.2. Extending the preceding block of symbols from (x2…xn–1) to (x1x2…xn–1) allows 
for longer correlations to be used in the guess of next symbol xn. 
 
To quantify the information in correlations of length n, suppose that we have an a priori 
conditional distribution P(0)(•|x2…xn–1) for a symbol xn, given that a specific preceding 
sequence (x2…xn–1) is known. Then we are interested in the information we get when we 
observe the symbol x1 and use that to change our probability description of the symbol xn to 
P(•|x1x2…xn–1), see Figure 3.2. The conditional probabilities in P(0) can not include any 
correlations of length n (stretching over a sequence of length n), but that is possible in the new 
distribution P. The Kullback information between P(0) and P is then a measure of the 
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correlation information of length n when a specific preceding sequence (x1x2…xn–1) is 
observed, 
 

 

! 

K[P(0);P] = p(xn | x1x2…xn"1)log
p(xn | x1x2…xn"1)

p(xn | x2…xn"1)xn

#  . (3.15) 

 
If we now take the average over all possible preceding sequences (x1x2…xn–1), we get an 
expression for the average information content kn in correlations of length n. This quantity can 
be rewritten in the form of a Kullback information, the correlation information from length n 
 

 

! 

kn = p(x1…xn"1)K[P(0);P] =
x1 …xn"1

#

= p(x1…xn"1)
p(x1…xn"1xn )

p(x1…xn"1)xn

# log
p(x1… xn"1xn )p(x2…xn"1)

p(x1… xn"1)p(x2…xn"1xn )
=

x1 …xn"1

#

= p(x1…xn )log
p(x1…xn )

˜ p (x1…xn )
=

x1 …xn

# K[ ˜ P n;Pn ] .

 (3.16) 

 
Here we have introduced an a priori distribution 

! 

˜ P 
n
 that is an estimate of Pn based only on 

(n–1)-length distributions, with probabilities 
 

 

! 

˜ p (x
1
…xn ) =

p(x
1
…xn"1

)p(x
2
…xn )

p(x
2
…xn"1

)
 , for n > 2, and (3.17) 

 

! 

˜ p (x
1
x

2
) = p(x

1
)p(x

2
)  , when n = 2. (3.18) 

 
One can show, see exercise 4.1, that this is the maximum entropy probability distribution for 
n-length sequences that coincides with the (n–1)-length probabilities when summation over 
first or last symbol is applied, according to Eq. (3.5) and (3.6). The distributions 

! 

˜ P 
n
 and Pn 

differ in that the first one does not include any correlations of length n, which again is an 
argument for the interpretation of kn as an measure of correlation information of length n. 
We can rewrite the correlation information by using (3.16) and decomposing the logarithmic 
term into a sum of four terms, which results in 
 
     kn

= !S
n
+ 2S

n!1 ! S
n!2 = !"S

n
+ "S

n!1 = !"
2
S

n
(n = 2,3,…)  . (3.19) 

 
Here we define S0 = 0, for Eq. (3.19) to be consistent with Eq. (3.16)-(3.18). Since kn is a 
Kullback information, we know that –Δ2Sn ≥ 0, as was seen in Figure 3.1 showing the block 
entropy Sn as a function of block length n. Let us also introduce an information quantity that 
measures the difference in character frequency from a uniform distribution. As an a priori 
distribution we use the completely "uninformed" uniform distribution     P1

(0)  that assigns equal 
probabilities     p1

(0)
(x1) = 1/! , to all characters x1 in Λ. The density information k1 can then be 

written as a Kullback information between the a priori uniform distribution and the observed 
single character distribution P1,  
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k1 = K[P1
(0);P1] = p(x1)log

p(x1)

1/"
x1

# = log" $ S1 . (3.20) 

 
We have thus defined a number of information quantities that captures the ordered 
information in the system — the density information k1 and the series of correlation 
information contributions kn (n = 2, 3, …). Let us combine all these into an information 
quantity, the correlation information kcorr,  
 

 

! 

kcorr = k
m

m=1

"

# = (log$ % S1) + (%S0 + 2S1 % S2) +

+(%S1 + 2S2 % S3) +

+(%S2 + 2S3 % S4 ) +

…

+(%S
m%2 + 2S

m%1 % Sm ) +

… =

= log$ % lim
m&"

(S
m+1 % Sm ) = log$ %'S" .

 (3.21) 

 
This is the ordered part, the redundancy, of the information in the system, expressed as an 
average per symbol. The entropy per symbol of the system, the Shannon entropy s, is a 
measure of the uncertainty that remains when all correlations, including deviation in symbol 
frequencies from uniformity, have been taken into account. One way to define this quantity, 
the remaining uncertainty, is to use the entropy of the conditional probability for the next 
character, given that we already have observed a preceding sequence of symbols. Then we 
take the average of this entropy over the possible preceding sequences, and we take the 
infinite limit of the length of the preceding sequence in order to include all possible 
correlations in the conditional entropy. The Shannon entropy s is then defined, according to 
Eq. (3.14), 
 

 

! 

s = lim
n"#

p(x1…xn$1)
x1…xn$1

% p(xn | x1…xn$1)log
1

p(xn | x1…xn$1)xn

% = lim
n"#

&Sn = &S#  (3.22) 

 
From this we can conclude, that the total entropy per symbol of log ν, which is the 
maxmimum entropy per symbol, can be decomposed in two terms, the redundancy kcorr and 
the Shannon entropy s,  
 
     Smax = log! = (log! " #S$) + #S$ = kcorr + s  . (3.23) 
 
Note also that the entropy can be expressed as the limit value of the infinite block entropy per 
symbol (proof left as an exercise), 
 

 
    

s = lim
m!"

1

m
S

m
 . (3.24) 
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The interpretation of these quantities in terms of coding theory is the following. If a text 
contains redundancy this can be removed in order to compress the text by using a coding 
procedure, replacing characters and sequences in an appropriate way. In the case of an 
optimal code, the compressed sequence may have a length of Ls/log ν if the original length is 
L. 
 

3.2 Markov processes and hidden Markov models 

3.2.1 Markov processes and entropy 
Some of the symbol sequences discussed in the course are the direct result of a simple 
Markov processes, i.e., processes in which the probability for the next state (or symbol) is 
fully determined by the preceding state (or symbol). This means that the conditional 
probability distribution P(• | z1…zn–1) over the next symbol zn, given a preceding sequence of 
symbols, converges already for n = 2. The entropy s of the process is then given already by 
ΔS2, see Eq. (3.22), 
 

 !!=
21

)|(

1
log)|()(

12

121

zz zzp
zzpzps   . (3.25) 

 
A Markov process can be described as a finite automaton with internal states zi (with i = 
1, … m, and zi belonging to the alphabet Λ) corresponding to the symbols generated. The 
process changes internal states according to transition probabilities, Pij, denoting the 
probability to move to state j from state i. An example of such an automaton is given in the 
figure below. The internal states (the possible symbols) are a, b, and c. Let us assume in this 
example that, when there is a choice for the transition from a state, all possible transitions 
from that state are equally probable. Here this means that Paa = Pac = Pba = Pbc = ½, Pcb = 1, 
and Pab = Pca = Pcc = Pbb = 0.  
 

  
Figure 3.3.    Example of finite state automaton representing a Markov process. 
 
To calculate the entropy of the process (or the symbol sequence), we need p(z), which is the 
probability distribution over the internal states (or, equivalently, the stationary probability 
distribution over the internal states). Since the (stationary) probability p(z) to be in a certain 
state z must equal the sum over the probabilities of possible preceding states w weighted with 
the transition probabilities to state z, we can determine p(z) by the equations 
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 wz

w

Pwpzp != )()(   , for all z ∈ Λ (3.26) 

 
together with the normalisation constraint Σz p(z) = 1. Note that the transition probabilities Pzw 
equals the conditional probabilities p(w | z), which means that the entropy s can be written 
 

 

! 

s = p(z)
z

" Pzw log
1

Pzww

"   . (3.27) 

 
In the example above, the stationary distribution over the states is found by solving Eqs. 
(3.26), replacing, e.g., the last one with the normalisation constraint, 
 

 

! 

p(a) =
1

2
p(a) +

1

2
p(b),

p(b) = p(c),

p(c) =1" p(a) " p(b),

 

 
and one finds that p(a) = p(b) = p(c) = 1/3. The term –Pwz log Pwz only contributes to the 
entropy in Eq. (3.27) when w is a or b, so the resulting entropy then turns out to be s = 2/3 
(bits). One way to view this is that the process needs one bit of “random information” in order 
to make the random choice of transition when leaving node a and node b. Since these nodes 
are visited with a fraction of 2/3 of the time and since this choice directly determines the 
symbols in the sequence, the average randomness, or the entropy, should be 2/3 bits.  
 

3.2.2 An example of an optimal code exploiting correlations 
Consider a stochastic process sending sequences of symbols from the alphabet Λ = {a, b, c, 
d}, like in example 2.1.1. Now we assume that there are correlations between neighbouring 
symbols. If the preceding character is observed, we have some additional knowledge about 
the probability for the following one. 
 

  
Figure 3.4.    Markov process generating sequence of symbols from the alphabet {a, b, c, d}. 
 
The correlations between the symbols are determined by the structure of the Markov process 
generating the symbol sequence. The finite state automaton in Figure 3.4 defines the Markov 
process. Solving for the stationary distribution, Eq. (3.26), results in the single symbol 
distribution P1 = {1/2, 1/4, 1/8, 1/8}, as we also had in the example 2.1.1. The entropy of the 
process is then determined by Eq. (3.27). This implies that there is a  single bit of contribution 
to the entropy each time the process is in any of the states a or b (since there is always 1/2 
chance for choosing a specific transition), but no contribution when leaving states c or d. The 
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entropy is then 1/2 + 1/4 bits = 3/4 bits. This is significantly lower than the 7/4 bits that we 
found in example 2.1.1, and what we would also get here if we would disregard correlations, 
the entropy of the single symbol distribution P1. 
 
The implication of this is that we should be able to find an even more efficient coding, 
compressing the length of a binary coded message down to 3/4 bits in average per original 
symbol. One easy way to achieve this is to start with the code word for the initial symbol  
using the code of example 2.1.1. After that the code words are 0 or 1 only, for states a and b, 
with 0 meaning a transition to a and 1 the other transition. For states c and d no code word is 
needed as the next state is unique6. Then, in average for a long message, we only need one bit 
after state a and another bit after state b, which is only in 3/4 of all positions in the original 
sequence, resulting in an average code word length of 3/4. 
 

3.2.3 Hidden Markov models and entropy 
In a hidden Markov model, one does not observe the states z of the process (or of the finite 
state automaton), but one observes some function of the state f(z). In the example above, if the 
function f is given by f(a) = 0 and f(b) = f(c) = 1, then we have a process that generates a 
sequence of ‘0’ and ‘1’ symbols, which is not a Markov process but a hidden Markov model. 
The process can now be illustrated by the following automaton: 
 

  
 
Figure 3.5.    Example of finite state automaton representing a Hidden Markov model. 
 
The process thus generates sequences of 0’s and 1’s in which the restriction is that blocks of 
1’s (separated by 0’s) always are of even length. This example is discussed in the next 
section, but in that case we illustrate the process in a different (but equivalent) form, by 
associating the symbols generated by the process with the transitions rather than with the 
internal states. In that way one can get a slightly more compact description, see figure below. 
 

                                                
6 In order to make sure one knows where the end of the message is (since there is no code word following states 
c and d), one may encode the last symbol of the message using the reversed code words that were used for the 
initial symbol (so that one can read the last code word from right to left at the end). 
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Figure 3.6.    Automaton with symbols on the transition arcs gives a more compact automaton representation 
equivalent to the Hidden Markov model of the previous figure.  
 
It turns out that the entropy of this process is still s = 2/3, even if other information-theoretic 
quantities is dramatically changed, to be discussed under example 3.3.4 below. 
 

3.3 Some examples 

3.3.1 Example: crystal 
Consider a periodic symbol sequence of zeroes and ones, 
 
 …010101010101010101010101010101… 
 
The density information is zero, k1 = 0, since the probabilities are equal for the two symbols, 
p(0) = p(1) = 1/2. The probabilities that are required for calculating the correlation 
information are 
 

 
    
p(0) = p(1) =

1

2
, p(0 |1) = p(1| 0) =1 , and p(0 | 0) = p(1|1) = 0 .  

 
The average contrast form of the correlation information from length n = 2, Eq. (3.16), then 
gives 
 

 

! 

k2 = p(x1)
x1

" p(x2 | x1)log
p(x2 | x1)

p(x2)x2

" = log2 =1 (bit). 

 
Since this is the total information (per symbol) of the system, we can conclude that all other 
quantities are zero, km = 0 for m ≠ 2, and s = 0. This is what one should expect. There is no 
entropy in this system — as soon as we see one symbol ("0" or "1"), we know the next 
symbol, and so on. 

3.3.2 Example: Gas 
Consider instead a symbol sequence generated by a completely random process, like coin 
tossing, 
 
 ...110000110100010110010011011101... 
 
The probability for next character to be "0" or "1" is 1/2 independent of how many preceding 
characters that we may observe. The entropy of the conditional probability is therefore always 
maximal, log 2 = 1 (bit), 
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 s = 1 , 
 
and there are no contributions from the redundancy, kcorr = 0. 

3.3.3 Example: Finite automaton generating short correlations 
Let us now consider a symbol sequence generated by a stochastic process described by a 
finite automaton, see Figure 3.7. 
 

 

1 0

1  
 
Figure 3.7. The finite automaton generates an infinite sequence of "0" and "1" by following the arcs between the 
nodes in the graph. When there are two arcs leaving a node, one is chosen randomly with equal probabilities for 
both choices. 

The automaton in Figure 3.7 generates a symbol sequence where 0's cannot appear in pairs, 
e.g.,  
 
 ...1101011111011110101011101110110... 
 
In order to calculate the information-theoretic properties, we need to transform the 
characteristics of the automaton to a probabilistic description of the symbol sequence. First, 
we calculate the densities of 0's and 1's. Since the transition (arc) to the right node (R) always 
generates a "0" and is the only way a "0" can be generated the probability for being in R, p(R) 
equals the frequency of 0's, p(0) = p(R). Similarly, p(1) = p(L). The probabilities for the nodes 
are given by the stationary probability distribution over the nodes. Here, this can be expressed 
by the fact that the probability for being in the left node p(L) must be equal to the probability 
that we were in this node last step and generated a "1" plus the probability that we were in the 
right node last step, 
 

 
    
p(L) = p(L)

1

2
+ p(R) ! p(L) =

2

3
and p(R) =

1

3
 , 

 
where we have used the normalisation p(L) + p(R) = 1. This means that p(0) = 1/3 and 
p(1) = 2/3. Then the density information is 
 

 

! 

k1 = p(x1)log
p(x1)

1/2
x1

" =
5

3
# log3 $ 0.0817  

 
All other redundant information is contained in correlations over block length n = 2, since if 
we observe one character we know which node in the automaton that is the starting point for 
generating the next character, and then we have the full knowledge about the true probabilities 
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for that character. Thus, p(0|1) = p(1|1) = 1/2, p(1|0) = 1, and p(0|0) = 0. The correlation 
information for length two is then 
 

 

! 

k2 = p(x1)
x1

" p(x2 | x1)log
p(x2 | x1)

p(x2)x2

" = log3#
4

3
$ 0.2516. 

 
The Shannon entropy s is the entropy (uncertainty) that remains when we are guessing the 
next character in the sequence, based on our knowledge on all preceding characters. The 
preceding characters inform us on which node is used in generating the next character, and, 
actually, this information is in the last character alone. Formally, this can be expressed 
 

 

! 

p(1 | x1…xn"11) = p(0 | x1…xn"11) =
1

2
, for all possible x1…xn"11, and

p(1 | x1…xn"10) =1, for all possible x1…xn"10 .

 

 
Equation (3.22) can now be used to calculate the entropy, 
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s = lim
m"#

$Sm = $S2 = p(x1)
x1

% p(x2 | x1)log
1

p(x2 | x1)x2

% =

= p(1) & log2 + p(0) & 0 =
2

3
' 0.6667

 

 
This is, of course, what we should expect, since we have already said that there is no more 
correlation information than what was calculated in k1 and k2, and then the rest of the 1 bit of 
information per symbol must be the entropy. 

3.3.4 Example: Finite automaton generating long correlations 
The finite automaton of Figure 3.7 is similar to the one of the previous example, with the 
difference that the arc leading from the right to the left node generates a "0" here. This means 
that the automaton generates sequences where 1's are separated by an even number of 0's. 
This is a hidden Markov model, as we discussed in the example of Section 3.2.3. 
 

 

1 0

0  
 
Figure 3.8.  Finite automaton generating sequences of 0's and 1's in which 1's are always separated by an even 
number of 0's. 

 
Suppose that we shall guess on the next character in the sequence, and that we may take into 
account an large (infinite) number of preceding characters, for example, 
 
 ...0001000011100100000000110000000? 
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Then it is sufficient to go back to the closest preceding "1" and count how many 0's there are 
in between. If there is an even number (including zero 0's), we are in the left node, and if there 
is an odd number, we are in the right node. When we know which node we are in, we also 
have the best probability description of the next character. (Only if there are only 0's to the 
left, no matter how far we look, we will not be able to tell which is the node, but as the length 
of the preceding sequence tend to infinity the probability for this to happen tends to zero.) 
 
Since the preceding sequence almost always determines (and corresponds to) the actual node, 
in the limit of infinite length, we can rewrite the entropy s as follows. 
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We have used the probabilities for the nodes L and R from the previous example, since they 
are the same. Expressed in this way, it is clear that the entropy of the symbol sequence comes 
from the random choice the automaton has to make in the left node. The right node does not 
generate any randomness or entropy. Therefore, we get the same entropy as in the previous 
example. Also the character frequencies are the same resulting in the same density 
information k1, but when we get to the correlation information over blocks, we get a 
difference. In this case, we have correlation information in arbitrarily large blocks, since any 
number of consecutive 0's may occur, and then there is more information to be gained by 
observing one more character. To calculate the expressions for the different correlation 
information terms is now more complicated, and we leave it as a difficult exercise to show 
that 
 

 

! 

k2n"1 =
1

3 # 2n
(9log3"14)  ,  n = 1, 2, 3, … , and 

 

! 

k2n =
1

3 " 2n#1
(5 # 3log3),  n = 1, 2, 3, … 

 
So, even if the last two discussed examples are identical in terms of entropy and redundancy, 
this second example may be considered more complex, since the correlation information is 
spread out on larger distances. In a later section, we shall se that such a difference may be 
used as one way to characterise the complexity of symbol sequences. 
 

3.4 Measuring complexity 
 
What characterises a complex symbol sequence or a complex pattern? There are a large 
number of suggestions on how one should quantify complexity. What quantity to use depends 
on what one is looking for in the system under study. In this section we will focus on 
quantities related to how correlation information is distributed in the system. This approach 
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was suggested by Peter Grassberger in the 1980’s, see (Grassberger, 1986). Consider two of 
the examples discussed above, the completely ordered (“crystal”) sequence and the 
completely random (“gas”) sequence: 
 
 ...010101010101010101010101010101... 
 ...110000110100010110010011011101... 
 
In the first case, the entropy is minimal (0 bit), and in the second case it is at maximum 
(1 bit). None of these are typically considered as complex, even though, in some contexts7, 
the random one has been called complex. The precise configuration of the gas needs a lot of 
information to be specified, but the ensemble or the system that generate that type of sequence 
is simple: “toss a coin for ever…”. The crystal has a simple description as it is: “repeat 01…”. 
 

     
Figure 3.9.  One is usually not considering a fully random pattern (left) as complex. Neither is a fully 
ordered structure exemplified by the checkerboard patter (right) considered as complex. The potential 
to exhibit complex characteristics usually requires patterns in between these extremes, patterns that 
may contain some order in correlations, but where correlations may reach over larger disctances, and 
where there is also some randomness as well. Here this is illustrated by a typical state in a physical 
spin system close to the critical temperature (middle). 
 
If neither the most ordered nor the most random systems are considered complex, we should 
look for a measure of complexity that can take high values when the entropy is somewhere in 
between, see Figure 3.8. One information-theoretic characteristic that has been considered as 
an important component for a complex system is to what extent correlation information is 
spread out in the system. If there is a lot of information in long-range correlation, it may be 
more difficult to analyse and describe the system. Grassberger suggested a quantity, the 
effective measure complexity, which can be defined as a weighted sum of information 
contributions from different block lengths, 
 

 

! 

" = (m #1)k
m

m=1

$

%  (3.28) 

 
We call this the correlation complexity, and it can be rewritten (if kcorr > 0) as 
 

                                                
7 In algorithmic information theory, which we shall discuss in a later Chapter, the random sequence has the 
largest “algorithmic complexity”. 



 

 32  

 

! 

" = k
corr

(m #1)
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corrm=1

$
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corr
(m #1) = k

corr
d
corr . (3.29) 

 
Here we have introduced an average correlation distance dcorr. This is based on the average 
block length at which correlation information is found, but where correlation distance is 
defined to be one less than the block length (or the “distance” between first and last symbol of 
the block). This complexity measure is non-negative, but it is not unbounded. For the 
“crystal” example η = 1 and for the totally random sequence η = 0. 
 
It also turns out that the correlation complexity can be interpreted as the average information 
contained in a semi-infinite symbol sequence (…x–2, x–1, x0) has about its continuation 
(x1, x2, x3, …). This quantity can be written as a Kullback information. Suppose first that the 
preceding sequence, that we may observe, has a finite length m and denote it 

! 

"
m

= (x#m+1,...,x0) . The continuation, has finite length n and we denote it 

! 

"
n

= (x
1
,...,x

n
) . At 

the end we shall look at infinite limits of m and n. The a priori description of the continuation 
is given by probabilities p(τn), but after we have observed the preceding sequence σm, we can 
replace that with the conditional probabilities p(τnσm). The information we gain by this is a 
Kullback information, and we take the average over all possible preceding sequences together 
with the limit of infinite lengths, 
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% m
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& log
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p(' n )
( 0 . (3.30) 

 
 

  
Figure 3.10.  The block entropy Sn an asymptotic line with slope equal to the entropy s. Also the ratio 
Sn/n converges to to the entropy, but more slowly. Therefore, in the limit of infinite sequences, Sn – n·s 
is a measure of how fast Sn/n converges to to the entropy s. This is the correlation complexity η, and 
graphically, it is the intersection point on the vertical axis of the asymptotic line for the block entropy. 
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One can also relate the correlation complexity to the block entropies, see Figure 3.10,  
 
 

! 

" = lim
m#$

(S
m
%ms) , (3.31) 

 
where s is the Shannon entropy of the symbol sequence (or more correctly of the stochastic 
process). The correlation complexity can thus be interpreted as the rate of convergence of 
Sm/m to s. The proof that these expressions are equal to the correlation complexity of Eq. 
(3.28) is left as an exercise. 
 

3.4.1 Correlation complexity for Markov processes and hidden Markov models 
For a Markov process the correlation complexity η is easy to calculate since there is no 
correlation information from blocks longer than 2, and therefore we get that η = k2. For a 
hidden Markov model, the situation is different. As we saw in example 3.3.4, such a system 
may have correlation information in arbitrarily long blocks of symbols. In some situations 
there may be an easy way to calculate the correlation complexity using the form that 
expresses the information contained in the past about the future of an infinite symbol 
sequence, Eq. (3.30). Consider again the automaton describing the process of example 3.3.4, 
see Figure 3.11. 
 

 

1 0

0  
 
Figure 3.11.  Example of hidden Markov model, represented by finite automaton generating sequences of 0's 
and 1's in which 1's are always separated by an even number of 0's. The probability for the arcs leaving the left 
node are both 1/2. 

If almost all past sequences σm, in the infinite limit, determine whether we are in the left (L) 
or in the right (R) node, we can rewrite Eq. (3.30). The probability of the future sequence τn is 
given by the node we are in, so we can group together all σm leading to the left node L (and in 
the same way all leading to the right one, R). Then we have 
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& log
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, (3.32) 

 
where p(L) and p(R) are the stationary probabilities for the left and right node, respectively. 
We now use the definition of conditional probability 

! 

p(" n | z) to rewrite the argument in the 
logarithm, 
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We can then rewrite Eq. (3.32) as follows, 
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The last sum over nodes z is the entropy of which node we were in conditioned on observing 
the future sequence τn. But the starting node for the future sequence is almost always uniquely 
given by the sequence τn. Only when there are only zeroes in τn, we do not know, but that 
happens with probability 0 in the infinite limit. Therefore there is no uncertainty of z given the 
future τn, and the last entropy term is 0. Finally we get, 
 

 

! 

" = p(z)
z#{L ,R}

$ log
1

p(z)
, (3.34) 

 
and we conclude that, for this situation, the correlation complexity equals the entropy of the 
stationary distribution of the states in the finite state automaton describing the hidden Markov 
model. Note, though, that this does not hold in general, but only for certain types of hidden 
Markov models. 
 
 

3.5 Extensions to higher dimensions 
 
The decomposition of information into entropy and contributions from different correlation 
lengths can be extended to lattice systems of any dimension. In this section we briefly indicate 
how the extension to the two-dimensional case is done, but it is easy to generalise the 
formalism also to higher dimensions.  
 
Consider an infinite two-dimensional lattice in which each site is occupied by a symbol (0 or 
1). (The generalisation to larger alphabets is straightforward.) Assume that the relative fre-
quencies, with which finite configurations of symbols occur in the lattice, are well defined. 
Let AM×N be a specific M×N-block occurring with probability p(AM×N). Then the entropy, i.e., 
the average information per site, is 
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1

MN
S
M $N , (3.35) 

 
where the block entropy SM×N is defined by 
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Figure 3.12. The configuration of cells Bm that is used in the conditional probability for the character x in the 
“next” cell, drawn with a broken line. By extending this configuration, we get better estimates of the unknown 
character x. 
 
Let Bm be a certain configuration of symbols arranged as follows: m rows of symbols, each of 
length 2m+1, are put on top of each other, and on the m first symbols of the top row a se-
quence of m symbols is placed, see Figure 3.12. We also introduce the notation Bmx for the 
configuration that adds the symbol x to Bm after the mth symbol in the top row. 
 
Then we can introduce the conditional probability for a certain character x given that we have 
already observed the characters in the configuration Bm, 
 

 

! 

p(x |Bm ) =
p(Bmx)

p(Bm )
. (3.37) 

 
This can be interpreted as the conditional probability for the “next” character given that we 
have seen the “previous” 2m(m+1) characters. The average entropy is  
 

 

! 

Hm = p(Bm )
Bm

" p(x |Bm )log
1

p(x |Bm )x

"  .  (3.38) 

 
For m = 0, we define H0 = S1×1, or the entropy of the single character distribution. One can 
prove, see Appendix (to be appended later), that in the limit m→∞, Hm is equal to the entropy 
(3.35), 
 
 

! 

s = lim
m"#

H
m

= H# . (3.39) 

 
As in the one-dimensional case, the average information of ln 2, or equivalently 1 bit, per 
lattice site can be decomposed into a term quantifying the information in correlations from 
different lengths (including density information) and a term quantifying the internal 
randomness of the system,  
 
 

! 

1= k
corr

+ s. (3.40) 
 
The density information k1 does not depend on the dimensionality, so it should be as in the 
one-dimensional case, 
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! 

k1 = p(x)log
p(x)

1/2
x

" =1# S1$1 =1#H0 .  (3.41) 

 
Then it is clear that if we define correlation information over length m by the difference 
between two consecutive estimates of the entropy s, i.e., km+1 = – Hm + Hm–1, for m > 0, then 
the decomposition above is complete. In order to show that this definition leads to km being a 
non-negative quantity, we introduce an operator R that reduces a configuration Bm to a 
configuration Bm-1 = RBm by taking away the symbols from the leftmost and rightmost 
columns as well as from the bottom row. Then km can be written as the average Kullback 
information when the distribution for “next” character given a conditional configuration Bm 
replaces an a priori distribution with a smaller conditional configuration Bm-1 = RBm, 
 

 

! 

km+1 = "Hm + Hm"1 = p(Bm )
Bm

# p(x |Bm )log
p(x |Bm )

p(x | RBm )
$ 0

x

# . (3.42) 

 

Here we have used the fact that summation over the characters in the part that is being 
reduced in Bm connects the probabilities for Bm and RBm,  
 
 

! 

p(RBm ) = p(Bm )
all configurations
in the reduced part

" . (3.43) 

 
The correlation information kcorr is then decomposed by 
 

 

! 

k
corr

= k
m

m=1

"

# .  (3.44) 

 
This procedure can be repeated in higher dimensions. Note also that the definition of 
correlation information contains a choice of direction and rotation: the Bm configuration can 
be chosen in eight different ways. In one dimension there are only two ways to choose, 
direction left or right, but the choice does not change the definitions. Furthermore, and this 
holds for both dimension one and higher, one may use other ways to decompose total 
redundancy which result in different type of correlation measures. 
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3.6 Excercises 
 
3.1 How can the symbol sequences in Example 3.3.4 be coded so that one gets a maximally 

compressed coded sequence? 
 
3.2 Suppose that we have a process that generates completely random binary sequences 

(x0, x1, x2, x3, …) with entropy 1 (bit). Construct a new binary sequence (y1, y2, y3, …) 
by addition modulo 2 of pairs of symbols from the first sequence, yk=xk–1+xk (mod 2), 
k=1, 2, … . What is the Shannon entropy of the new sequence? 

 
3.3 The finite automaton below represents a stochastic process generating binary sequences 

in which 1's are separated by an odd number of 0's. What is the Shannon entropy? How 
long correlations are there (from the information-theoretic point of view)? Assume that 
the arcs leaving the central node have equal probabilities. 

 

   
 
3.4 Consider the class of stationary stochastic processes that generate binary symbol 

sequences in which pairs of 1's are forbidden. What is the largest entropy such a process 
could generate?  

 
3.5 Information loss in multiplication.  Consider two independent stochastic processes 

generating uncorrelated sequences of symbols 0, 1, and 2, with equal probabilities of the 
different symbols. Form the product process in which a symbol zk is the product modulo 
three of the corresponding symbols from the original processes, zk = xk * yk (mod 3). 
Here, mod 3 means that 2 * 2 = 1, while all other multiplications work as usual. How 
much information is lost in average from the original pair of symbols (xk, yk) when the 
product zk is formed? 

 
3.6 Consider an infinite sequence of isolated 1's, separated by either one or two 0's (but not 

more), for example, "…100101010010010100101…". What probability distribution 
should we choose for describing the system, if we want the entropy s to be as large as 
possible? (The answer need not be explicit, but an equation that determines the 
parameter(s) is sufficient. 

 
3.7 Show that (3.22) and (3.24) are equivalent as definitions of the Shannon entropy s.  
 
3.8 Show that the distribution 

! 

˜ P 
n
 with the probabilities defined as in Eq. (3.17), can be 

derived by the maximum entropy formalism, using the constraints that the summation 
over first and last character results in the distribution Pn–1 . 

 
3.9 Interpretation of a spatial average. Consider a doubly infinite symbol sequence based 

on an alphabet of m different symbols, Γ = … σi–1 σi σi+1 σi+2 …, where σi denotes the 
symbol in position i. Suppose that the sequence is generated by some ergodic, stationary 
stochastic process, so that the probability distributions for sub-sequences also can be 
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derived from internal statistics in the sequence Γ (as we usually assume). Consider the 
quantity 

 
  Ii,n  =  – ln p(σi | σi–n … σi–2 σi–1) , 
 
 where p(σi | σi–n … σi–2 σi–1) is the conditional probability defined by  
 p(σi–n … σi–2 σi–1 σi )/p(σi–n … σi–2 σi–1) . 
 
 a) How can this quantity be interpreted?  
 
 b) What is its spatial average (for almost all Γ) in the limit n → ∞,  
 

  

! 

lim
n"#

lim
L"#

1

2L +1
I
i,n

i=$L

L

%   ? 
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4 Cellular Automata 
 
Cellular automata (CA) are simple models of dynamical systems that are discrete in space and 
time. The number of states per lattice site, or cell, is finite and usually small. The time 
development is governed by a local updating rule that is applied in parallel over the whole 
lattice. John von Neumann introduced cellular automata in the 1950’s, and he wanted to use 
these models in his study of self-reproduction and noise-sensitivity of computation. One 
purpose was to demonstrate the existence of objects capable of complex behaviour combined 
with the capability of self-reproduction.  This work lead to the design of a cellular automaton 
rule on a two-dimensional lattice with 29 states per cell. The designed object capable of 
making a copy of itself in this space also had the capability to simulate any computational 
process, usually termed a computationally universal system. In this way complex behaviour 
of the object was said to be guaranteed. This work was completed and published by Arthur 
Burks after von Neumann’s death (von Neumann & Burks, 1966). 
 
There are several possibilities to construct cellular automaton rules, even with only two states 
per cell, that demonstrate various examples of complex behaviour. One well-known is “Game 
of Life” that was introduced by John H. Conway in 1970. This rule has been studied 
extensively, mainly because of its capability of producing complex behaviour like 
propagating spatio-temporal structures from random initial states, exemplified by the simple 
“glider” in Fig. 4.1. The rule is based on a local configuration involving the cell and its 8 
neighbours. Cells can be “alive” or “dead”, represented by black and white in the figure. A 
“dead” cell becomes “alive” in the next time step if exactly 3 neighbours are “alive”, while a 
cell that is “alive” remains so only if 2 or 3 neighbours are “alive”. 
 

 
Figure 4.1.  The cellular automaton “Game of Life” exemplified by five time steps of the “glider”, a 
propagating object with an internal cycle of five time steps.  
 
One can show that “Game of Life” also has the capability of universal computation. This can 
be done, for example, by constructing structures in the lattice that serves as wires that allow 
for propagating signals that may interact through structures serving as logical gates. 
 
Already in the simplest class of CA, the CA rules in one dimension that have local interaction 
depending on nearest neighbours only, there are examples of various types of complex 
behaviour. In 1989 it was shown that with 7 states per cell, it is possible to construct CA rules 
that are capable of universal computation (Lindgren & Nordahl, 1989). A direct implication is 
that results from computation theory applies to this rule. For example, the halting problem, 
stating that there is no general procedure to determine whether a computer program will ever 
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halt, transforms into a theorem for computationally universal CA. This means that there are 
initial states for such a CA for which it is impossible to prove whether the CA will develop to 
a fixed point. Ten years ago Matthew Cook proved that the even more simple CA rule R110, 
depending on only two states per cell, is computationally universal (Cook, 2004). The space-
time pattern of  R110 is exemplified in Fig. 4.2.  
 
Cellular automata as models for physical systems met with a renewed interest in the 1980’s, 
partly because of the classic paper by Stephen Wolfram (1983), “Statistical mechanics of 
cellular automata.” Among the physical applications of cellular automata, the “lattice gases” 
are the most well known. These CA simulate systems of particles with discrete (usually unit) 
velocities moving on a lattice. Despite the highly simplified microscopic dynamics, some of 
these systems approximate the Navier-Stokes equations for fluid dynamics, when averages 
are taken over large numbers of particles. 
 
In this Chapter we shall demonstrate how the information-theoretic concepts presented in 
Chapter 3 can be used in order to analyse how order and disorder develop during the time 
evolution for different types of cellular automaton rules. We shall in particular study CAs that 
are reversible and discuss how apparently random patterns may be created in such systems. 
This will be related to the second law of thermodynamics to be discussed in a later chapter. 
 

4.1 Elementary Cellular Automata 
The simplest class of cellular automata is based on a one-dimensional lattice with two states 
per cell and a nearest neighbour rule for the dynamics. Such a rule is fully determined by 
specifying the next state of a cell for each of the eight possible local states that describes the 
present state of the local neighbourhood. An example of such a specification is shown in the 
following Table. 
 

t 111 110 101 100 011 010 001 000 

t + 1 0 1 1 0 1 1 1 0 

 
The time evolution of this rule, starting from a random sequence of 0’s and 1’s, is exemplified 
in Fig. 4.2. The top row of black (1) and white (0) dots represent the initial state, and the 
following rows represent the development in time when the rule in the table is applied in 
parallel over the whole row. In this CA class the rules can thus be described by the binary 
digits in the second row of the table, which means that eight binary symbols determine the 
rule. In the example, we have the rule number (01101110)2 which in decimal form is 110 — 
the rule mentioned above being computationally universal. There are 28 = 256 elementary CA 
rules, but several of these are equivalent (by symmetries, such as changing symbols and 
direction), which results in 88 different rules. 
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Figure 4.2.  The time evolution of CA rule R110 starting with an “random” initial state (in the top 
row) shows how a periodic background pattern is built up at the same time as complex structures 
propagate and interact. This is a good example of the complexity that simple CA rules may exhibit.  

 
The dynamic behaviour of elementary CA can differ a lot from one rule to another. Wolfram 
suggested a classification with four types. The simplest CAs, class I, approach a homogenous 
fixed point as is exemplified by the rule in Fig. 4.3a. A class II rule develops into an 
inhomogenous fixed point or to a periodic and/or simple shift of the pattern like in Fig. 4.3b. 
The class III rules never seem to approach an ordered state, but their space-time patterns 
continue to look disordered, as illustrated in Fig. 4.3c. These rules are often called “chaotic”. 
Then there is a class IV that is more vaguely defined as a border class between II and III with 
long complex transients, possibly mixed with a spatio-temporal periodic background pattern, 
see Fig. 4.3d. Also rule R110 in Fig. 4.2 belongs to this class. 
 
An important characteristic of the class III, or the chaotic, rules is that they are sensitive to 
small perturbations, just like chaotic low-dimensional systems. If one follows the time 
evolution starting from two initial states, differing at one position only, the number of 
differing positions tends to increase linearly in time. This is illustrated in Figure 4.4, which 
shows the differing cells between the space-time patterns of two CAs following rule R22. 
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a)  
 

b)  
 

c)  
 

d)  
 
Figure 4.3.  Cellular automata space-time patterns from the four classes of CA rules: a) Class I rules 
approach a fixed point (e.g., R160). b) Class II rules develop a periodic pattern in space and/or time 
(e.g., R213). c) Chaotic or class III rules are characterised by a continuous change of the patterns at 
the same time as a high disorder is kept (e.g., R22). d) Class IV is a border class involving features 
from both class II and class III with long complex transients. The last example is generated by a rule 
that depends on the number of living cells (1’s) in a 5-cell neighbourhood, so that a cell survives if 1 
or 3 neighbours are alive and a cell becomes living if 2 to 4 neighbours are alive. 
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Figure 4.4.  The difference pattern resulting from the time evolution of CA rule R22 starting from two 
different states, initially differing only by the state in one cell. 

 

4.2 Information theory for Cellular Automata 
 
What happens with the entropy that describes the internal disorder of the CA state in the time 
evolution? Initially we may have prepared the system as a maximally disordered sequence of 
symbols with an entropy of 1 bit per cell. Under what circumstances will this entropy 
decrease to create order in the system? 
 
We shall use the information theory for symbol sequences presented in Chapter 3, in order to 
prove relations between the entropy of the CA at time t and the following time step t + 1. 
Suppose that we have a cellular automaton rule with range r, i.e., the local neighbourhood 
involved in the rule includes 2r + 1 cells (r the left, r to the right, and the cell itself). We also 
assume that there are only two states per cell (0 and 1); the formalism is easily extended to 
more states. At each time step t, the state of the CA is described as a symbol sequence 
characterised by its entropy s(t). 
 
To begin with we shall assume that the rules are deterministic, which implies that the state at 
time t fully determines the state at the next time step. Let βm denote a certain sub-sequence of 
symbols of length m at time t + 1. This sequence may have several possible predecessors at 
time t. Since the rule has range r, the predecessor sequence has length m + 2r, and we denote 
such a sequence αm + 2r. The probability distributions that describe the symbol sequences at 
different times may of course be different, and we use p for probabilities at time t and p!  for 
probabilities at time t + 1. Then the probability for a sequence βm at t + 1 can be expressed as 
the sum of the probabilities for all possible ancestors, 
 

 

! 

" p (#m ) = p($m +2r)
$m+2r %#m

& . (4.1) 

 
This relation can be used to establish a connection between block entropies of length m + 2r 
at time t with block entropies of length m at time t + 1, 
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Sm (t +1) = " p (#m )log
1

" p (#m )#m

$ = p(%m +2r )
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$ log
1

p(%m +2r )
%m+2r &# M

$# M

$ '

' p(%m +2r )log
1

p(%m +2r)
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) 
* 

+ 

, 
- 

%m+2r &# M

$
# M

$ = Sm +2r (t).

 (4.2) 

 
Here we have made use of the fact that log(1/x) is a decreasing function of x, when removing 
the summation in the logarithm8. This inequality can be used to derive the change in Shannon 
entropy between to successive time steps in the CA time evolution, 
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 (4.3) 

 
By using Eq. (4.2) and the fact that the second term in Eq. (4.3) goes like 2r s(t)/m, we can 
conclude that, for deterministic cellular automata rules, the entropy decreases (or stays 
constant) in the time evolution 
 
 

! 

"s(t) # 0. (4.4) 
 
This irreversibility, when the inequality is strict, can be understood by the fact that 
deterministic CA rules reduce the number of possible states (symbol sequences) in the time 
evolution. This decrease in entropy is associated with an increase in total correlation 
information (including density information). This is clearly visible in the periodic pattern 
formed in the time evolution of rule 110, illustrated in Fig. 4.1. The initial state is a 
completely disordered sequence of zeroes and ones with en entropy s = 1 (bit), but as time 
goes on correlation information is built up and entropy decreases. 
 

4.2.1 Almost reversible rules 

An important property of the rules that govern a dynamical system is whether they can be 
considered reversible. In physical systems, the microscopic laws of motion usually are 
reversible, and therefore it is of interest to investigate the information-theoretic properties of 
cellular automata that can be considered reversible. Intuitively, we should expect the entropy 
of such a CA to be constant in time.  
 
With a reversible CA rule we consider a CA in which each microstate (infinite symbol 
sequence) has a unique predecessor at the previous time step. We shall show, though, that 
there is a weaker form of reversibility that results in a constant entropy, i.e., equality in Eq. 
(4.4). 
 

                                                
8 We use the fact that (x+y)log(1/(x+y)) ≤ x log(1/x) + y log(1/y). 
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Suppose that a cellular automaton rule R with range r can be written as  
 
 2mod),...,(),,...,( 11 rrrrrr xxxfxxxR += !!!! , (4.5) 
 
where the summation is taken modulo 2. This means that the rule R is a one-to-one mapping 
with respect to its last argument — a flip of the state in the rightmost cell in the 
neighbourhood flips the result of the rule. (A corresponding type of rule can be constructed 
with respect to the leftmost argument.) 
 
Note that this type of rule involves a certain type reversibility: Suppose that we know the 
semi-infinite microstate y1y2y3… of the CA at time t + 1, and that we know the first 2r cells of 
the corresponding preceding microstate x1x2…x2r at time t. Then we can use the rule (4.5), by 
entering x1x2…x2r as an argument in f, to find the cell state x2r+1 at t that corresponds to the 
result yr+1. By repeated use of this procedure, we may reproduce the complete semi-infinite 
microstate x1x2x3… at time t. Only 2r bits of information are needed to reproduce the 
preceding microstate from the present one, and we call such a rule almost reversible. These 
rules differ from the reversible rules in that each microstate may have several (up to 22r) 
preceding microstates. 
 
Then the probability for a sequence βm at t + 1 can be expressed as the sum of the 
probabilities for all possible ancestors using a transfer function T(αm + 2r,βm). T takes the value 
1 if αm + 2r→βm under the rule, otherwise 0. 
 
 

! 

" p (#m ) = T($m +2r,#m )p($m +2r)
$m+2r

% . (4.6) 

 
The transfer function has the properties 
 
 

! 

T("
m+2r,#m

)
"
m+2r

$ = 2
2r , (4.7) 

 

! 

T("
m+2r,#m )

#
m

$ =1. (4.8) 

 
To simplify the notation, we drop the length indices on α and β. The difference in block 
entropies between m-length blocks at t + 1 and (m + 2r)-length blocks at t can then be written 
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Here we have used the fact that the Kullback information is non-negative. The symbol “•” in 
the position for α indicates that the constructed Kullback information is based on 
(normalised) probability distributions over α. This result then implies, cf. (4.3), 
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"s(t) # lim
m$%

&
2r

m
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( 
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* 

+ 
, = 0. (4.10) 

 
In combination with the law of non-increasing entropy for deterministic rules, Eq. (4.4), this 
results in a constant entropy for the time evolution of almost reversible rules. 
 
 

! 

"s(t) = 0. (4.11) 
 
For these cellular automata the initial distribution of information between entropy and 
redundancy is kept in the time evolution. Still, there may be non-trivial information-theoretic 
changes since the correlation length may change, provided that the system is prepared with an 
initial redundancy, for example in the form of density information. We shall look at 
illustrations of this in the section on examples. 
 

4.2.2 Rules with noise 
If noise, in the form of randomly flipped states, interfere with an otherwise deterministic rule, 
it seems reasonable that an increase in entropy is possible for some rules, provided that we 
start from an initial state with s < 1. Suppose that the deterministic rule R is applied as usual 
on the complete CA microstate, but that in the resulting microstate each cell state is flipped 
with a probability q. Then we denote such a probabilistic rule by the pair (R, q). 
 
The change in entropy in one time step, can then be decomposed into two terms, one negative 
(or zero) term ΔRs(t) associated with the deterministic change from rule R, cf. Eq. (4.4), and 
one positive term Δqs(t) due to the “added” entropy from the noise, 
 
 

! 

"s(t) = "Rs(t) + " qs(t)  . (4.12) 
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Let us now see how the noise increases the entropy s. Suppose that the probability distribution 
for m-length sequences of symbols are given by probabilities p(αm), after the rule R has been 
applied. The noise then transforms the probabilities according to a transfer function 
Tq(αm, βm), 
 
 

! 

ˆ p ("m ) = Tq (#m,"m )p(#m )
#m

$  . (4.13) 

 
The transfer function depends on the Hamming distance H(αm, βm), i.e., the number of cells 
for which the disturbed sequence βm differs from the original one αm, which implies that 
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Tq ("m,#m ) = q
H ("m ,#m )(1$ q)m$H ("m ,#m ). (4.14) 
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Tq ("m,#m )
"m

$ = Tq ("m ,#m )
#m

$ =1. (4.15) 

 
The change in block entropy ΔqSm due to the noise can then be written (dropping the length 
index m on the sequence variables α and β) 
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since the Kullback information is non-negative. From this we can conclude that 
 

 0
1

lim)( !"="
#$

mq
m

q S
m

ts . 

 
But it is also clear, from the fact that the Kullback information is zero only when both 
involved distributions are identical, that the added noise entropy is zero only when 

)(ˆ)(
mm

pp !" = for all αm and βm. This only occurs when 

! 

p("m ) = ˆ p (#m ) = 2
$m , i.e., when the 

cellular automaton state is completely disordered with maximum entropy s = 1. 
 
If the rule R involved is almost reversible, the only entropy change comes from the added 
noise. Starting from an ordered initial condition, s < 1, the entropy will increase until the 
system is completely disordered, 
 
 1)1( if,0)( <!>" tsts , (4.16) 
 
 1)1( if,0)( =!=" tsts . (4.17) 
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The following table summarises the results concerning the entropy change in deterministic 
and noisy cellular automata. For irreversible and noisy CA both increase and decrease in 
entropy is possible, depending on rule and the details of the current microstate. 
 

 Deterministic Noisy 

Irreversible Δs(t) ≤ 0 – 

Almost reversible Δs(t) = 0 Δs(t) ≥ 0 

 
The results presented in this section are easily extended to two and more dimensions. One 
class of CAs that is of interest for this type of analysis is lattice gas models. As we will see in 
the next Chapter, the entropy analysed here is proportional to the thermodynamic entropy, and 
therefore the different relations shown, especially for (almost) reversible rules, has 
implications for the second law of thermodynamics, stating that physical entropy for a closed 
system cannot decrease. 
 

4.3 Examples of information-theoretic properties in the evolution of simple CA 
 
The irreversibility expressed by the law of non-increasing entropy for deterministic rules, Eq. 
(4.4), and illustrated by the time evolution of rule R110 in Fig. 4.2, can be quantified by 
calculating the increase in correlation information during the first time steps. In Fig. 4.5, we 
have plotted the contributions to the redundant information from density information k1, as 
well as from correlation information from blocks of lengths up to 8, i.e., k2,...,k8, as functions 
of time. The initial state is completely “random” with an entropy of 1 and a total redundancy 
of 0. During the time evolution the entropy is transformed to density and correlation 
information. 
 
If an almost reversible rule starts from a random initial state (s = 1), then the maximum 
entropy will be conserved in the time evolution, according to Eq. (4.11). For this type of 
system it is more interesting to study what is happening if one starts with a low entropy initial 
state, i.e., an initial configuration with s < 1. In the example shown in Fig 4.6, the time 
evolution of rule R60 is shown. This is an almost reversible rule given by xk´ = R(xk–1, 
xk) = xk–1 + xk  (mod 2). This type of rule is also denoted additive rule. Note that the rule only 
depends on the cell itself and the left neighbour. The initial state is prepared with a 90% 
frequency of 1’s, but without any correlations, resulting in k1 ≈ 0.53 and s ≈ 0.47. 
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Figure 4.5.  During the time evolution of CA rule 110, density and correlation information increases 
at the same time as entropy decreases by the same amount. In the diagram, the density information k1 
is represented by blue and contributions to correlation information from the first 7 terms, k2 to k8, 
represented by grayscale patterns from dark to light gray, are put on top of each other. 
 
The time evolution of the CA in Figure 4.6 is characterised by the density information and the 
short length correlation information terms, see Figure 4.7. Even though the total redundancy 
is conserved, there are large changes in the specific km terms, showing that correlation 
information is changing significantly in length from one time step to another. Note also that at 
certain time steps, t* = 1, 2, 4, 8, 16, etc, a large part of the redundancy is again gathered in 
the density information, k0, and that these time steps are preceded by a series of steps in which 
correlation information is moving back from larger distances towards the density (or single 
cell) information term. Contributions from correlation information of length larger than 8 is 
not shown in the figure, but since we know that the total redundancy is conserved we also 
know that these contributions add up to the horizontal line at k = 1 – s. Of course, as time 
goes on, these events become more rare, which implies that in the long run most of the states 
(time steps) will not show any tracks of short length correlations. One can actually quantify 
this by using the correlation complexity η, and it can be proven (Lindgren & Nordahl, 1988) 
that the complexity increases linearly if s < 1,  
 
 1 if    ,)( <=! sstt" , (4.18) 
 
otherwise Δη(t) = 0. In other words, the average correlation length increases linearly in time.  
 
Therefore, even if the entropy is conserved for rule R60, the state of the CA will in the long 
run (at most time steps) appear more and more disordered, unless increasingly long 
correlations are taken into account when calculating the entropy. The low initial entropy may 
appear to increase, if the system is observed locally only. 
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Figure 4.6.  The space-time pattern of rule R60, an almost reversible rule, exhibits non-trivial 
behaviour when the entropy is less than 1 bit, s < 1. The initial state is dominated (90%) of 0’s.  
 

 
Figure 4.7.  The diagram shows the contributions to the redundancy from density information (blue) 
and correlation information of lengths 2 up to 7 (grayscale from dark to light) put on top of each other, 
for the time evolution of the almost reversible rule R60. The initial state does not contain any 
correlations but there is density information due to the 90% dominance of the state 0. Therefore, the 
initial redundancy is larger than zero and the entropy s < 1. The reversibility implies that the entropy is 
conserved, and the figure then shows that information quickly is distributed over correlations of 
lengths larger than six. 
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Figure 4.8.  Noise at a level of 1% is added to rule R60, and the initial redundancy is efficiently 
destroyed in the time evolution, cf. Figure 4.6. 

 
Figure 4.9.  In the same way as was illustrated for rule R60 without noise, see Figure 4.7, the 
contributions to the redundancy, from density information (blue) and from correlation information 
over lengths 2 to 6 (dark to light grey), are put on top of each other. It is clear that the noise destroys 
the correlations, and the entropy increases. 

 
If the time evolution of rule R60 is disturbed by random noise, the correlations that are built 
up from the initial density information are rapidly destroyed. In Figure 4.8, the space-time 
pattern is shown when a noise of 1% (q = 0.01) is added. It is clear, as also Figure 4.9 
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illustrates, that the time steps when a large part of the redundancy is recollected in the density 
information disappear. According to Eq. (4.16), the time evolution will lead to a completely 
disordered state with maximum entropy s = 1 (bit).  
 
 

4.4 Analysis of CA time evolution using Hidden Markov models 
 
The change of information-theoretic characteristics in the state of a one-dimensional CA, 
represented by the infinite sequence of symbols, from one time step to the next, can be 
analysed by inivestigating how the finite state automaton (FSA) representation of the 
sequence changes under the CA rule. Here we will assume that the state is given by a 
stochastic process, represented by a certain FSA. The FSA can correspond to a Markov 
process, which it does for the initial state if we, for example, start with uncorrelated symbols, 
like in the examples in previous sections. In general, though, also for such an initial condition, 
the CA rule transforms the automaton to one representing a hidden Markov model, as we 
shall ses in examples below. How the procedure works to transform one FSA to a new one 
under a CA rule will be illustrated by the following example. 
 
Assume that we have, at time t, a certain description of the CA state in the form of the hidden 
Markov model shown in Fig. 4.10a, where we assume all transition probabilities to be ½ 
whenever ther eis a choice. First we rewrite that into a corresponding Markov model, Fig. 
4.10b, in which all the states are represented by specific symbols.  
 

   
Figure 4.10.  (a) FSA representing the hidden Markov model in which sequences of symbol 1 are 
separated by an odd number of the symbol 0. (b) FSA representing the corresponding Markov model 
in which the rightmost state has been given symbol 0' in order to distinguish between the two 0-states. 
The hidden Markov model in (a) is then given by the function f(1)=1, f(0)=0, and f(0')=0. All transition 
probabilities are ½ when there is a choice. 
 
Next we construct a new Markov model out of the one in Fig 4.10b, by having each FSA state 
representing pairs of symbols form the sequence. These pairs are overlapping, so that a state 
can be seen as a two-symbol wide “window”, and each transitions in this automaton moves 
the window one step forward in the sequence of symbols, as illustrated in Fig. 4.11. 
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Figure 4.11.  (a) FSA representing the same Markov model as in Fig. 4.10b, but where states 
corresponds to overlapping pairs of symbols, and where the transition move to the next pair 
overlapping with the previous one, as illustrated in (b). The transition probabilities from the original 
automaton remains, all being ½ when there is a choice. 
 
The transitions in the FSA based on pairs of symbols, in Fig. 4.11, correspond to triplets of 
symbols (resulting from the two overlapping pairs of symbols of the states connected by the 
transition). Therefore, we can apply the elementary CA rule on the triplets to get the 
automaton representing the stochastic process that describes the next time step of the CA. In 
Fig. 4.12 this is illustrated with the resulting automaton shown for rule R86:  
 

t 111 110 101 100 011 010 001 000 
t + 1 0 1 0 1 0 1 1 0 

 
This rule is almost reversible (involving a 1-to-1 mapping between rightmost cell and 
resulting state). Thus we know that entropy s will not change under the CA rule, but 
correlation characteristics may do. 
 

  
Figure 4.12.  (a) The transitions on the FSA for the original time step t correspond to triplets of 
symbols and thus defines the local neighbourhood on which the CA rule is applied. In (b) the resulting 
FSA is shown where the states in the node are hidden, and this FSA represent the stochastic process 
describing the CA state at time t + 1. 
 
It is now possible to use the FSA of Fig. 4.12b to calculate the properties of the CA at the new 
time step. One can simplify these calculations, though, by minimising the FSA exploiting the 
fact there there exist equivalent states in the automaton. The leftmost state (old 11) and the 
top middle state (old 01) both produce a 0 with probability ½ ending up in the leftmost state 
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and they both produce a 1 with the same probability ending up in the bottom middle state (old 
10). Therefore they are equivalent in every aspect, and the states can be merged as shown in 
Fig. 4.13. 
 

  
 
Figure 4.13. The most compact FSA representation of the CA state characteristics for time t + 1, when 
elementary CA rule R86 is applied to a CA state characterised by the FSA in Fig. 4.10a at time t. 
 
For the FSA in Fig. 4.13, it is straightforward to calculate the stationary distribution over the 
nodes, which results in probability 2/5 for the upper left node and 1/5 for the others. One can 
check that the conditions for using the simplified expression of the entropy, as discussed in 
Example 3.3.4, is fulfilled here9. This means that the entropy equals the information required 
for the choices of transitions in the FSA. Each such choice involves 1 bit, as the probabilities 
are ½ whenever there are two outgoing transitions. This occurs in all nodes except the lower 
right one, with a total weight of 4/5. This results in the entropy s = 4/5 (bit), which one also 
finds for the original FSA in Fig. 4.10a. The correlation complexity η for the FSA at t + 1 in 
Fig. 4.13 can be calculated using the approach in Section 3.4.1 and Eq.(3.34) stating that η 
equals the entropy of the stationary distribution over the nodes, which gives ηt+1  = log 5 – 
(2/5)log 2 ≈ 1.92 (bits). For the original FSA at t the correlation complexity is similarly 
derived, ηt = log 5 – (4/5)log 2 ≈ 1.52 (bits). This indicates an increase in average correlation 
length for this time step. 
 
 

                                                
9 For almost all preceeding sequences (generated by this FSA), in the infinite length limit, one can uniquely 
determine which node is the final one. 
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4.5 Local information detecting patterns in CA time evolution 
 
In the time evolution of a cellular automaton rule it is often difficult to distinguish the normal 
behaviour from more rare events. For example, in a chatic rule like R18 the irregular space-
time pattern contains local structures that are less common, but they are not easy to 
distinguish. Therefore it would be useful to be able to filter out the regular patterns to identify 
local configurations that deviate. 
 
In information terms one would expect that when a local less common configuration is 
encountered at a certain position i in the sequence of cells, the conditional probability for that 
configuration given the n-length symbol sequence, for example, in the cells to the left of it 
will be relatively small. This implies a high local information of that conditional probability, 
 

 

! 

Ii,n
(L )

= log
1

p(si | si"n…si"1)
, (4.19) 

 
where si denotes the symbol at position i, see (Helvik et al, 2007). A corresponding local 
information 

! 

I
i,n

(R ) conditioned on the n cells to the right of the position i is similarly defined. 
Such a local information quantity has a spatial average that can be written 
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By using the ergodicity theorem, Eq. (3.7), we find that  
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The same holds for the corresponding right-sided quantity 

! 

I
i,n

(R ). We can define a local 
information as an average between the two, 
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) , (4.22) 

 
This means that the local information Ii,n, as well as the left- and right-handed versions, has a 
spatial average that equals the entropy of the system. In Figures 4.14 and 4.15, the local 
information is applied to the patterns generated by two cellular automaton rule, one being the 
irreversible class III rule R18, and the other almost reversible rule R60. The information 
pictures reveals a pattern not clearly seen in the space-time CA patterns. 
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Figure 4.14. The space-time CA pattern for rule R18, and the corresponding information density Ii,n 
picture. 
 

Space-time diagram for surjective rule 60 Local information
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Figure 4.15. The space-time CA pattern for rule R60, and the corresponding information density 
picture. Here the informationdensity Ii,n is derived analytically. A numerical estimate would not be 
computationally possible because of the linearly increasing correlation lengths.  
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4.6 Exercises 
 
4.1  Suppose that the initial state of a cellular automaton is generated by the following 

automaton, where the probability for choice of arc is 1/2. 

  

0

0

1

 
 How large is the entropy initially? If the rule is R18, how does the automaton look like 

that describe the system after one time step, and what is the entropy s? What will the 
entropy be at this time step if the rule instead is R22? 

 
4.2 CA entropy. Consider a one-dimensional cellular automaton given by elementary rule 

71 (where configurations 110, 010, 001, and 000 result in a 1 and the rest give 0). Let 
the initial state be characterised by the following finite state automaton 

   

  
 

0 0 

0 

1 

 
 
 where the probabilities for choosing an arc is always the same (1/2) if there is a choice. 

What is the initial entropy (t = 0), and what is the entropy at t = 1 and t = 2? 
 
4.3 Lattice gas entropy. Consider an infinite 2-dimensional lattice gas constructed in the 

following way. The space is a square lattice and in each cell up to four particles may be 
present (one in each direction). The system evolves in discrete time, and in each time 
step there is movement and collision. Particles move from one cell to the next according 
to the direction of the particle. A collision occurs if and only if exactly two particles 
enter a cell with opposite directions, and then the direction of these particles are shifted 
so that they leave perpendicular to their initial directions. The two processes in a single 
time step is illustrated in the following figure: 
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 Suppose we have a system where we initially (at t = 0) have equal densities of the four 

particle directions (ρ/4 each with ρ being the overall particle density), but where 
particles initially are present only in cells where all particle directions are present. 
Assume that these cells, each containing four particles, are randomly distributed over 
the whole lattice. 
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 Consider the entropy s of the spatial configuration of particles, based on the 2-

dimensional block entropy  
 

  
mm

m

S
m

s !
"#

=
2

1
lim  

 
 What is the entropy s at t = 0? How does the entropy change in the time evolution?  

 
 If one would estimate the entropy using a finite block size m after very long time T, 

with T >> m, what result should one expect? What is the explanation? 
 
4.4 CA entropy.  Consider a one-dimensional cellular automaton given by elementary rule 

128 (where configurations 111 results in a 1 and the rest give 0). Let the initial state be 
characterized by the following finite state automaton 

   

  

1

1

1

0

0

 
 
 where the probabilities for choosing an arc is always the same (1/2) if there is a choice. 

Determine the finite state automaton that characterizes the state at time t = 1. What is 
the initial entropy (t = 0), and what is the entropy at t = 1 and t = 2? 

 
4.5 CA entropy. Consider a one-dimensional cellular automaton given by elementary rule 

192 (where configurations 111 and 110 result in a 1 and the rest give 0). Let the initial 
state be characterized by the following finite state automaton 

   

  

1
1

1

0

10

 
 
 where the probabilities for choosing an arc is always the same (1/2) if there is a choice. 

Determine the finite state automata that characterize the state at time t = 1 and at time 
t = 2, respectively. What is the initial entropy (t = 0), and what is the entropy at t = 1, 
t = 2, and t = 3? 
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4.6 Suppose that the initial state (t = 0) for the elementary CA rule 18 is described by the 
finite automaton:  

 

   
 
 First, suppose that q = 1/2. What does the finite automaton look like that describes the 

state at time t = 1? How has the entropy changed between these time steps? What is the 
entropy at t = 2? 

 
 If q > 1/2, what is then the entropy s at t = 2? 
 
 
4.7  Consider a binary periodic sequence ...01010101... . If noise is added so that symbols in 

this sequence are flipped (0 —> 1 and 1 —> 0) with a certain probability q < ½, how 
does the correlation complexity change? 

 
 
4.8 Suppose that elementary rule 129 governs the time evolution of a cellular automaton, 

and that the initial state (at t = 0) is characterised by the following finite automaton  

  

0 

0 

1 

1  
 where the probabilities for choosing 0 and 1 from the middle node are equal (1/2). What 

is the entropy s after one time step (t = 1) and after two steps (t = 2)? 
 
 Suppose instead that the probabilities for choosing 0 and 1 in the middle node differ, 

say p(0) < ½ < p(1). Describe in a qualitative way how this affects entropy and 
correlations at the first time step (t = 1). 

 
 
4.9 Suppose that elementary rule 68 governs the time evolution of a cellular automaton, and 

that the initial state (at t = 0) is characterised by the following finite automaton  
 

  

0 0 

1 

1 

 
 
 where the probabilities for choosing 0 and 1 from the bottom left node are equal (1/2). 

What is the initial entropy, and how does it change over time? 
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5 Physics and Information Theory 
 
When observing, or measuring on, a physical system we often gain knowledge on some 
macroscopic characteristics of the system, for example its energy or molecular composition. 
We seldom have full information on the exact microscopic configuration of the system, but 
we may, based on what we know regarding the macroscopic properties, assign a probabilistic 
description of the system. Such a desciption could be in the form of a probability distribution 
over the possible microstates of the system. Following the discussion in Chapter 2, such an 
assignment of probabilities should not include more knowledge than we have, and thus we 
should use a maximum entropy approach. 
 
Before describing in detail how the maximum entropy approach connects information theory 
with statistical mechanics, we will study a simpler example in which the information is 
directly connected to the work that can be extracted out of an ordered, non-equilibrium, 
system, when bringing that system reversibly to an equilibrium, i.e., to a fully disordered 
state. That example will be based on some basic thermodynamic definitions and relations that 
will first be summarised below. 
 

5.1 Basic thermodynamics 
 
In the following section we will consider ideal gases (pure or mixed gases). In an ideal gas 
molecules are assumed to be point particles that do not interact. For such a system the ideal 
gas law holds, 
 
 

! 

pV = Nk
B
T . (5.1) 

 
Here, p is the pressure, V the volume, N the number of molecules in the gas, T the 
temperature, and kB Boltzmann’s constant (1.38 × 10−23 J/K).  
 
We will use this relation in order to determine the work that is required (or that can be 
extracted) when a gas volume is changed. If one assumes that the system may interact with 
the environment (the world outside the system defined by the volume V) by receiving energy 
in the form of heat Q or deliver energy in the form of work W, then we can use Figure 5.1 to 
illustrate the first law of thermodynamics. 
 
 

  
 
Figure 5.1.  The first law of thermodynamics states that energy is a conserved quantity. The change in 
internal energy U is determined by the net energy difference resulting from the inflow of heat Q and 
work extracted from the system W.  
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The change ΔU of internal energy U must equal the difference between heat received and 
work delivered. (Heat and work may, of course, go in the other direction, when the quantity is 
negative.) This is the first law of thermodynamics stating that energy is a conserved quantity,  
 
 

! 

"U =Q#W . (5.2) 
 
If the work is pressure-volume work, i.e., work dW extracted from an ideal gas from an 
infinitesimal volume change dV, then the work is 
 
 

! 

dW = pdV . (5.3) 
 
Thermodynamic entropy ST is a quantity that follows a heat flow but that is not present in the 
energy flow associated with the work. (We will use the notation ST for thermodynamic 
entropy to distinguish that from the information theoretic entropy. As will be seen, there is a 
simple relation between these.) With a heat flow dQ of temperature T follows an entropy 
increase of the system dST, 
 

 

! 

dS
T

=
dQ

T
. (5.4) 

 
Similarly, a heat flow leaving a system decreases the entropy of the system (but increases the 
entropy in the system that receives the heat). In general, the change of entropy of a system 
receiving heat is larger than or equal to the right-hand side of Eq. (5.4), where the inequality 
comes from irreversible processes taking place in the system which results in an increased 
entropy. For a closed system, the second law of thermodynamics states that, the entropy 
always increases or stays constant.  
 

5.1.1 Intensive and extensive variables 
We will consider a system of volume V that contains M different molecular species, each with 
a certain number of molecules Ni (i=1,…, M). Further, we assume that the system is 
characteised by a certain internal energy U. If we assume that the system is in internal 
equilibrium, the thermodynamic entropy ST of the system is well defined by the state variables 
U, V, and Ni. 
 
These state variables are extensive variables, i.e., they increase linearly with system size. One 
can characterise the same system using intensive variables instead, related to these three types 
of extensive variables. Sometimes the relations below, based on the how the thermodynamic 
entropy ST depends on the extensive variables, are used as definitions of the intensive 
variables temperature T, pressure p, and chemical potential gi. The relations are partial 
derivatives thermodynamic entropy ST with respect to one of the extensive variables (U, V, or 
Ni), with the other variables kept constant (as indicated by the notation), 
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We will use these relations when interpreting the maximum entropy approach from 
information theory within statistical mechanics in Section 5.3.  
 
 
5.2 Work and information — an extended example 
 
In this section we consider the following experiment dealing with mixing of ideal gases. First, 
the two gases are separeted within a container by a wall. When the wall is removed the gases 
expand into the full volume of the container, and finally the system consists of the mixture of 
the two gases occupying the full volume. In the mixed system we have less information about 
the positions of gas molecules compared to the case when the gases are seprated by the wall. 
It turns out that the additional information we have in the separated case corresponds to the 
amount of work that we can extract when bringing the system to the mixed state in a 
controlled way. Below we shall see how the information is related to the energy that can be 
extracted in the form of work.  
 
Let us consider a gas container of volume V with a mixture of two different ideal gases 1 and 
2, see Figure 5.2. The total number of molecules is N, of which N1 are of type 1 and N2 are of 
type 2. The normalised concentration can be written x1 = N1/N and x2 = N2/N. If we pick a 
molecule from a certain part of the container, we do not know which molecule we will get, 
but we describe the chances by the probability distribution given by the concentrations 
P = {x1, x2}. The information-theoretic entropy S can then be used to quantify our lack of 
knowledge about the system (which molecule we will get), 
 

 

! 

S = x1 log
1

x1

+ x2 log
1

x2

. (5.8) 

 

Consider now the case where the two gases are separated. The container is divided in two 
parts with volumes V1 and V2, so that the pressure is the same everywhere, i.e., V1 = x1V and 
V2 = x2V, see Fig. 5.2. If we now pick a molecule from a certain place, we know which 
molecule it is and our uncertainty (entropy) is zero. By mixing the gases, we make an 
information loss of ΔSI = SI per molecule. 

 

 
          N, p N1, p     N2, p 
 
Figure 5.2.  The to gases are mixed in the container to the left, but to the right they are separated by a 
wall so that the pressure is equal in the two parts. 
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Figure 5.3.  The two gases are mixed reversibly by an isothermal expansion in which work is done, 
followed by a fully reversible mixing without any energy transfer. 
 
We will now calculate the maximum amount of work that can be derived from a process 
mixes the two gases. Then we may compare that with the information-theoretic loss we make 
by mixing the gases. We will also derive the thermodynamic increase of entropy, to be 
compared with the information-theoretic one. 
 
Suppose that the gas container is in thermodynamic equilibrium with the environment at 
temperature T0. Since the initial volume and the final volume of our system are equal, there 
will be no net pressure-volume work done on the environment and we may assume that the 
environmental pressure is zero in our calculations. Now we shall mix the gases in a reversible 
way as follows. First, let the separated gas volumes expand isothermally, each to the full 
volume V, by allowing a heat flow from the environment to keep the temperature constant, 
see Fig. 5.3. Next, we let the gases mix reversibly by letting them pass the semi-permeable 
walls, when the two volumes are pushed together. Note that there is no net force involved in 
this mixing, since the molecules in the first volume do not recognise the wall of the second, 
and vice versa. There is no heat flow involved in the mixing, so the entropy is unchanged in 
this part of the process. The only work (and entropy change) in this process comes from the 
expansion. The work Wi, for volumes i = 1 and 2,  is given by, using the ideal gas law, Eq. 
(5.1), and Eq. (5.3), 
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which results in  
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W =W1 +W2 = NkBT0(x1 ln
1

x1

+ x2 ln
1

x2

) = NkBT0(ln2)S , (5.10) 

 
where the factor (ln 2) enters only if the information-theoretic entropy is measured in bits, as 
in Eq. (5.8). The relation between extractable work per molecule w and information loss when 
the system is mixed ΔS is then 
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! 

w = kBT0 (ln2)"S . (5.11) 
 
We have assumed an isothermal process (i.e., constant temperature). Since the internal energy 
U of an ideal gas is a function of temperature only (since there is no interaction between the 
molecules), energy conservation implies that the work W done by the system must equal the 
heat flow Q into the system. The change of thermodynamic entropy ΔST = Q/T0  for the whole 
system can then be written 
 

 

! 

"ST =
Q

T0
= NkB(ln2)"S . (5.12) 

 
This illustrates the fact that the conversion factor between information-theoretic and 
thermodynamic entropy per molecule sT is kB(ln 2),  
 
 

! 

sT =kB(ln2)S . (5.13) 
 
Note that the information-theoretic quantity here was also expressed on the level of a single 
molecule, since it quantified information associated with observing one molecule from the 
system. One bit of information thus has a very low thermodynamic value. This example also 
illustrates that the information loss when mixing two gases is not really from the “mixing”, 
but it comes from the fact that each gas, after the mixing, is distributed over a larger volume. 
 
 
5.3 From information theory to statistical mechanics and thermodynamics 
 
Information theory can be used as a tool to determine the macrostate (the probability 
distribution over microstates) in physical systems when averages of certain physical variables 
like energy and number of particles are known. According to the maximum entropy principle, 
we should choose the macrostate that has the largest entropy and that is consistent with the 
known variables. In this section, we shall demonstrate the connection between concepts in 
information theory and concepts in statistical mechanics and thermodynamics. 
 

  
 
Figure 5.4.  We consider a system om volume V, with an expected internal energy U and M different 
molecular species, each with an expected number of molecules Ni. The system is placed in a large 
environment characterised by a certain energy density u0 and certain molecular densities 
(concentrations). Both the system and the enviornment can also be characterised by their 
corresponding intensive variables, temperature T, the pressure p, and the chemical potentials gk. 
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We will consider a system characterised by a certain volume V, and M different molecular 
species. The system is part of a larger surrounding equilibrium system with possibly different 
energy per unit volume as well as different concentrations ni (i=1,…, M), as indicated in 
Fig. 5.4. Our knowledge about the studied system of volume V is that its composition is given 
by expectation values (or averages) Ni (i=1,…, M) of the number of molecules of the different 
species. We also know that the the expectation value U of the internal energy is known. 
 
This is the type of situation discussed in the Section 2.2 on the maximum entropy formalism. 
We do have some knowledge about the system in terms of averages, or expectation values, of 
certain properties of the system, but we do not know the microstate, neither the probability 
distribution over the microstates. The maximum entropy formalism can now be applied to 
derive a distribution over the microstates. Like in Section 2.2, the maximisation problem can 
be formulated as 
 

 
 
 
 
 
(5.14) 
 
 
 
 
 

 
Here the microscopic function h(i) determines the energy of a certain microstate i, and in 
average that should equal internal energy U. Similarly, the function fk(i) determines the 
number of molecules of species k in microstate i, which in average should equal Nk. In order 
to solve the problem and to derive some important relations, this level of description is 
sufficient, and we do not need to specify these functions further. 
 
Following the Lagrangian formalism in Section 2.2, we introduce Lagrangian variables: β for 
the energy constraint, λk (k=1,…, M) for the M different constraints on number of molecules, 
and µ–1 for the normalisation constraint. The solution is then a Gibbs distribution, cf., Eq. 
(2.15),  
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The entropy of the Gibbs distribution is easily determined, 
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At this point, we can determine how the Langrangian variable µ depends on volume V. If we 
multiply the system by a certain factor, increasing all extensive variables (energy, number of 
molecules), for example by putting together two identical system (i.e., multiplying with a 
factor of 2), then all variables S, U, and Nk, will increase with the same factor. This means that 
also µ must have such a linear dependence on volume: µ = µ(V) = µ1V, where µ1 does not 
depend on volume. If we now also use the relation between thermodynamic entropy and the 
information-theoretic one (with information expressed in natural units), ST = kBS, we can 
write Eq. (5.16),  
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By using this equation together with the thermodynamic definitions on temperature T, 
pressure p, and chemical potential gk, from Eqs. (5.5-5.7), we find that the Lagrangian 
variables can be expressed in these intensive variables, 
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By inserting this in Eq. (5.17), we get the Gibbs equation,  
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By using the maximum entropy formalism to derive a probability distribution over 
microstates, the Gibbs distribution, we have derived one of the fundamental relations in 
thermodynamics. 
 

5.3.1 Comparing two different Gibbs distributions 
There are often reasons for comparing two different Gibbs distributions, for example, when a 
smaller physical system, characterised by a certain Gibbs distribution P, deviates from an 
environment (equilibrium) system characterised by the distribution P0 that would describe the 
system if it would be in equilibrium with the environment. In that equilibrium situation, the 
system would have other values on its extensive variables (energy and number of molecules 
of different kinds). With the notation from Fig. 5.4, we would have for the internal energy 
U0=u0V, for the number of molecules Nk=nkV. The environment (and the system in 
equilibrium with it) would also be characterised by intensive variables, the temperature T0, the 
pressure p0, and the chemical potentials gk0 (k=1,…, M). Again, using the maximum entropy 
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formalism to derive the distribution describing the equilibrium situation, the distrbution P0, 
characterised by the probabilities  
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Since the constraints for the equilibrium distribution is different, we have other Lagrnagian 
variables now, as indicated by the subscript 0. Like in Eqs. (5.18-20), we can replace the 
Lagrangian variables for the equilibrium situation with the corresponding intensive 
thermodynamic variables, 
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One can now ask the question: If we a priori assume that the system (in volume V) will be in 
equilibrium, characterised by the Gibbs distribution of Eq. (5.22), but after observation learn 
that the correct description is the non-equilibrium Gibbs distribution of Eq. (5.15), how much 
information have we gained? Below we will relate such an information gain with 
thermodynamic properties of the non-equilibrium situation. 
 
The Kullback information K[P0; P] between the a priori equilibrium description and the 
observed one, both being Gibbs distributions, can be written 
 

 

! 

K[P
0
;P] = pi "µ

1
V "# h(i) " $k fk (i)

k=1

M

% + µ
0
V + #

0
h(i) + $k0 fk (i)

k=1

M

%
& 

' 
( 

) 

* 
+ 

i

% =

= (µ
0
"µ

1
)V + (#

0
"#)U + ($k0 " $k )Nk

k=1

M

% =

=
1

kBT0
p
0
V +U " gk0Nk

k=1

M

%
& 

' 
( 

) 

* 
+ "

S
T

kB

 .  (5.26) 

 
where we in the last step have used Eq. (5.17). If we multiply by kBT0, we get 
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The expression on the right-hand side quantifies the amount of work that can be extracted 
from a process that brings the system characterised by the distribution P (or the extensive 
variables U, V, and Ni) into equilibrium with the environment characterised by P0 (or the 
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corresponding intensive variables T0, p0, and gi0). Willard Gibbs introduced this general form 
of free energy already in 1875. This energy is often called the exergy of the system in the 
given environment. We will use the term exergy of a system as the most general form of free 
energy, which is then defined by the maximum amount of work that can be extracted when 
the system is reversibly brought to equilibrium with its environment. Thus, the exergy E 
equals the Kullback information between the equilibrium state and the actual one, multiplied 
with kBT0, 
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By combining the expression for exergy, Eq. (5.27), with the Gibbs equation (5.21) for 
internal energy, the exergy can be written 
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5.3.2 Information and free energy in non-equilibrium concentrations 
Let us now introduce chemical concentrations, ci = Ni/V and ci0 = Ni0/V, for the system and its 
environment, respectively. Here we will focus on informtion and thermodynamic 
characteristics of a system that deviates from equilibrium in its concentrations of different 
molecules. Suppose, therefore, that the system has the same temperature and pressure as the 
environment, T = T0 and p = p0. Further, we assume that the chemical potential can be written 
as for an ideal solution, 
 

 i
i cC
Tk

g
ln

B

+= . (5.30) 

 
Here, C is a constant. Then the exergy can be written as a Kullback information between the 
concentration distribution in the equilibrium state (environment) and in the system, using the 
normalised concentrations ciV/Ni and ci0V/Ni0, respectively, 
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where N is the total number of molecules in the system, N = ∑kNk, and c and c0 denotes the 
concentration distributions. We have now written the exergy as a Kullback information again, 
but now on a macroscopic level, since it is based on the concentrations observed in the system 
(and in the environment). This Kullback information can serve as a starting point for 
examining spatial structure in chemical systems. It has the advantage that it is in an 
information-theoretic form at the same time as it connects to statistical mechanics and 
thermodynamics through the basic concept of exergy. The second law of thermodynamics 
tells us that, for a closed system, the entropy increases (or is constant), or, equivalently, that 
the exergy decreases (or stays constant). Such physical restrictions may be important in the 
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description and analysis of chemical systems that exhibit self-organisation. We shall return to 
such an analysis in a later chapter. 
 
 
5.4 Microscopic and macroscopic entropy 
 
The second law of thermodynamics originates from Clausius (1850) and Kelvin (1852), who 
found a thermodynamic quantity which is non-decreasing in time, and Clausius (1865) 
introduced a term for it — entropy. At this time, statistical mechanics had not been 
established, but there was a need for an understanding of the relation between 
thermodynamics and microscopic properties of gases. A first step was taken by Krönig (1856) 
who discussed macroscopic phenomena in terms of microscopic properties. Soon Clausius, 
and later Maxwell and Boltzmann developed a kinetic theory for gases.  
 
A problem which remained unsolved was how to understand the second law of 
thermodynamics from kinetic gas theory. In an attempt to solve this, Boltzmann (1872) 
introduced a function of the microstate in a gas, the H-function, which under certain 
assumptions was proven to be decreasing in time until the system reaches an equilibrium 
given by the Maxwell-Boltzmann distribution law for molecular velocities. This is called the 
H-theorem, and the idea was that this should correspond to the second law of 
thermodynamics, with the H-function being equal to the entropy with opposite sign. This 
approach met with difficulties, especially when it was applied to other systems than dilute 
gases, which led to the development of ensemble theory by Gibbs (1902) and Einstein (1902, 
1903).  
 
In ensemble theory one considers a large number of systems, in which certain macroscopic 
variables are known, either as an average or exactly. In the microcanonical ensemble all 
systems (elements in the ensemble) have exactly the same energy, while the canonical 
ensemble only prescribes an average energy for the whole ensemble. A probability pi is 
associated with each microstate in the ensemble, which is then described by a distribution 
P = { pi}, and the entropy is defined as k Σpi ln(1/pi), i.e. an ensemble average of k ln(1/pi). 
Quantities like energy or number of particles can, of course, be interpreted both at the 
microscopic and at the macroscopic level. But for entropy it seems at first that it is a 
macroscopic property only, and that it is more difficult to associate it with a certain 
microstate. The physical state, the macrostate, is defined to be the probability distribution 
over the microstates, although a single physical system will always be found in a single 
microstate. 
 
In our discussion of entropy in symbol sequences, based on internal statistics of a single but 
very long sequence (microstate), we have considered that entropy as a characterisation of the 
internal randomness or the disorder. It then seems plausible that there should exist a 
microscopic property that corresponds to the macroscopic entropy, and hence also yields the 
other thermodynamic properties of the system, at least of the system (or the microstate) is 
large enough to provide sufficient internal statistics. In fact, one can show under some, fairly 
general, conditions that a system in which each microstates can be described as a symbol 
sequence σ, the (internal) randomness in form of the entropy s(σ) serves as a microscopic 
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entropy smicro(σ). The ensemble average of the entropy s(σ) for an individual microstates σ is, 
in the thermodynamic limit, equal to the thermodynamic entropy s per symbol (times a 
constant), 
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where the summation is over all microstates in the ensemble. In fact, for almost all 
microstates in the ensemble, the microscopic entropy equals the thermodynamic entropy, 
 
 )(!ss = , for almost all σ. (5.33) 
 
This can be understood if one realises that each microstate contains all correlations that are 
necessary for determining the whole ensemble. The internal correlations of a microstate give 
restrictions to its randomness, expressed by its (internal) entropy s(σ), as well as to the 
uncertainty of the macrostate, expressed by the thermodynamic entropy S. (In the 
thermodynamic limit the exceptions to this is of measure zero.)  
 
In conclusion, the thermodynamic entropy, which is usually interpreted as a measure of 
disorder or uncertainty on which microstate a certain physical occupies, also has an 
interpretation on the micro level. The microscopic entropy s(σ) quantifies the internal 
disorder in the microstate σ on the basis of internal correlations. 
 
5.4.1 Microscopic entropy in spin systems 
In this section, we shall illustrate how the microscopic entropy can be used to determine the 
equilibrium state in simple one-dimensional spin systems. 
 
In a previous section, we used the maximum entropy formalism to determine the macrostate, 
the probability distribution, which characterises a certain physical system. Here we shall 
apply the maximum entropy formalism on the microscopic entropy of a spin system, or a 
system that can be described as a symbol sequence. This should then result in a probabilistic 
description of blocks of symbols in the microstate. Again, the maximisation is done under 
certain constraints, usually in the form of an average energy in the system. There are also 
constraints regarding typical properties that hold for probabilities of symbol sequences, for 
example, regarding summation over last or first index, see Eqs. (3.5) and (3.6). 
 
In a spin system, the local interactions between spins (symbols) give rise to certain energy 
contributions, depending on the specific local configuration. This is usually characterised by 
an energy function that associates a certain energy value h(x1,…, xn) for each sequence of 
spins x1,…, xn within the interaction distance n. A given value of the internal energy u (per 
spin) in the system, then results in the constraint 
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The maximisation problem then takes the form: Find a set of probability distributions Pm over 
m-length sequences so that the entropy  
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 (5.35) 

 
is maximised, under the energy constraint (5.34).  
 
This may look very complicated, but if there are no restrictions on longer sequences than 
interaction distance n, as stated by (5.34), then the entropy s equals ΔSn, which means that we 
need only consider sequences of length up to n. In order to see this, let us suppose that we get 
convergence only at ΔSm, with m > n. Then this means that there is correlation information 
over blocks of length m, i.e., km > 0. But this is an unnecessary correlation information that 
reduces the maximum entropy, since we may reduce km to zero by selecting the m-block 
probability as p(x1,…, xn) = p(x1,…, xn–1) p(x2,…, xn) / p(x2,…, xn–1), see Eq. (3.17), without 
affecting the energy constraint. This procedure may then be repeated down to length n, 
showing that it is sufficient to examine 
 
 

n
S!max , (5.36) 

 
under the constraints above. 
 
As a more specific example, consider the one-dimensional Ising model (without an external 
field). Suppose that our system is composed by an infinite sequence of spins, pointing either 
up or down, 
 
 …↑↓↓↓↑↓↓↑↑↑↓↓↑↑↑↑↓↓↓↑↓↑↑↓↓↓↓↓↑↑↑↑↓↑↑↓↓↓…, 
 
and that the energy in the system is determined by nearest neighbour interactions only: 
Configurations ↓↓ and ↑↑ contribute with energy –J, while ↑↓ and ↓↑ contribute with +J. 
Since h only depends on pairs of spins, it is sufficient to find maximum of ΔS2, in order to 
determine the probability distributions. Then there are three probabilities to consider: 
p0 = P(↓↓), p1 = P(↓↑) = P(↑↓), and p2 = P(↑↑), where we have used the symmetry 
P(↓↑) = P(↑↓) that must hold in an infinite binary symbol sequence. Probabilities for single 
spins can then be written P(↓) = p0 + p1 and P(↑) = p1 + p2.  
 
To solve the maximisation problem, we introduce the Lagrange function 
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Here β is the Lagrange variable related to the energy constraint, while µ is related to the 
normalisation constraint. The block entropy difference can be written 
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The derivation of the following solution is left as an exercise 
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Here we have chosen to keep the Lagrange variable β, instead of the energy u. As in the 
general Gibbs distribution, see (5.18), it is related to temperature, β = (kBT)–1. It is clear that 
in the limit T → 0, spins are arranged in parallel, p0 = p2, while in the limit of  T → ∞, all p 
are equal, and we get a completely disordered state. 
 

5.5 Exercises 
 
5.1 A small spin system. Consider a system of 2x2 spins, in which a microstate is a 

configuration like the one below. 
 

↑ ↓ 
↑ ↑ 

 
 Each spin has two neighbours, as the example indicates, one in the vertical direction and 

one in the horizontal direction. Each such neighbour interaction contributes with an 
energy +J for parallel spins and –J for anti-parallel spins (so that in the example above 
the energy is 0). If the average energy is u, what is the equilibrium distribution over 
microstates? (Use the maximum entropy formalism. You may give the answer as a 
function of temperature instead of energy.) 

 
5.2 Spin system. Suppose that in a one-dimensional discrete spin system, described by a row 

of spins, up or down, the interaction is with third nearest neighbours only (position x 
interacts with position x + 3). Parallel spins at this distance contribute with an energy –J 
and anti-parallel spins with an energy +J. What is the equilibrium state of this system? 
Use the maximum entropy formalism, and express the probabilities that characterise the 
equilibrium as functions of temperature (or of β).   

 
5.3 Consider a one-dimensional spin system with 4 states per position:  ← ,  → ,  ↓  och ↑  . 

Interaction is with nearest neighbours only, such that parallel spins contribute with 
energy –J < 0,  anti-parallel spins with the energy J > 0, while perpendicular spins give 
no energy contribution. Characterise an equilibrium distribution as function of 
temperature T. What is the entropy in the limit T → 0? (Make use of the fact that finite 
interaction distance in one dimension does not allow for any phase transitions, i.e., all 
symmetries are kept in the equilibrium description.)  
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5.4 Consider a one-dimensional spin system with 2 spin states:  ↓  och ↑  . Interaction is with 
both nearest and next nearest neighbours, so that parallel spins at distance 1 (e.g., ↑↑)  
contribute with the energy –J < 0 and anti-parallel spins with energy J, while parallel 
spins at distance 2 (e.g., ↑_↑) contribute with energy J and anti-parallel spins with energy 
–J. What is the equilibrium description? (The solution needs not be explicit, but it is 
sufficient to determine the equations from which the probabilities can be derived.) What 
is the entropy in the zero temperature limit (T → 0), and how does a typical state look 
like in that situation?  

 
5.5 Happy agents. Consider an infinite one-dimensional lattice system (of cells) in which 

each cell may be inhabited by a red (R) individual, a blue (B) individual, a pair (RB of 
agents with different colours), or the cell may be empty. Assume equal densities of 
individuals R and B of 1/4 each. Each individual has a happiness level being the sum of 
the happiness from the relation with the closest neighbours. If there is a pair in a cell the 
happiness of that cell is 4H (with H being a positive “happiness” constant), and then there 
is no contribution from the neighbouring cells. If there is a single individual in a cell, the 
happiness of that individual get a contribution of H/2 from each single living neighbour 
of opposite colour (to the left and to the right, but no contribution from neighbour pairs). 
Empty cells do not contribute to happiness. 

 
 If you know that the average happiness is w, how would you guess that the system looks 

like in equilibrium, using information-theoretic arguments. You may answer in terms of a 
set of equations that you need not solve. Discuss what happends if the "temperature" is 
low (limit of zero temperature), with the interpretation that a low temperature 
corresponds to a high "happiness". What is the entropy in this limit? 

 
 (If you prefer, all this can be thought of as molecules A and B that may aggregate to a 

larger molecules AB, with the interpretation of H as a negative interaction energy 
constant.) 

 
5.6 An infinite “spin” system. Consider an infinite one-dimensional lattice system in which 

each position can be in one of three possible states: A, B, or C. Assume that neighbouring 
symbols contribute with energy +J if they are the same or if they are A and C (i.e., AA, 
BB, CC, AC, and CA) while all other neighbour combinations contribute with –J, where 
J is a positive constant.  

 
 (a) If the average energy per position is u, what is the equilibrium distribution? Use the 

maximum entropy formalism to determine the equations that give the probabilistic 
description. You need not solve the equations derived. 

 
 (b) Calculate the entropy for zero temperature. (This can be done without solving the full 

problem in a.) 
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5.7 Could the automaton below possibly represent the equilibrium state in a one-dimensional 
spin system, in which the average internal energy u  fulfils the constraint  

 u = ∑i1... i m p(i1...im) h(i1...im) ? 
 

  

0

0

1

 
  
 Suppose instead that the automaton that represents the equilibrium state is as follows:  
 

   
 
 What spin system (or other one-dimensional system with energy constraints) may this 

automaton represent? (Must be shown.) How does the probability q connect to inverse 
temperature ß and/or interaction energy constant J ? 

 
5.8 Suppose that in a one-dimensional discrete system, described by a row of “land pieces” 

or cells, there live these “dot” agents. By inspecting what they are doing you quickly find 
the following characteristics. There is a density ρ of “dots”, some of them living alone at 
a “piece of land”, and some of them that have joined in a “marriage” so that two share the 
same “piece of land”. You also find that whenever there is a married couple in one cell, 
the adjacent cells (to the left and to the right) are always free — the married couple really 
want to be on their own or others avoid them. You also find by studying several systems 
of this kind that the fraction of “dots” that are married is a certain constant α. 

 

  
 

 
 
 Now, before analysing more in detail the statistics of the “dot world”, you want to design 

a probabilistic description of the system that is consistent with the observations above 
and that has a maximum in its (Shannon) entropy.  

 
 Use the maximum entropy formalism to find a probabilistic description that obeys the 

constraints described above, including the parameters ρ and α. Assume that the system is 
of infinite length.   

 
5.9 Dots are back. Consider an infinite two-dimensional lattice system (of square cells) in 

which dots are distributed. The cells can be either empty or inhabited (by one or two 
dots). Free living dots have an “energy level” of  0, while pairs (two dots in one cell) 
have the energy –J (where J is a positive constant). Assume that there is a certain density 
of dots ρ, and that there is a given average energy u (per cell). Use the maximum entropy 
formalism to characterise an “equilibrium” state of this system as a function of an 
“inverse temperature” (β). What is the entropy? What happens in the limit of a “zero 
temperature”? 
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6 Geometric information theory 
 
In the first chapters we have focused on an informaiton perspective in which the total 
information of the studied system can be decomposed into contributions from different 
correlation lengths as well as the remaining random information, the entropy. In the present 
Chapter, we are aiming for a different decomposition of the ordered information. We ask the 
questions: At what length scales do we find information? At what positions in the system is 
information located? We will consider systems in a continues space of arbitrary dimension. 
The application that we have in mind is to pattern formation in chemical systems that will be 
treated in Chapter 7. Another application is to the analysis of images, but that will not be part 
of this course. 
 

6.1 Information decomposition with respect to position and resolution 
 
A chemical self-organising system may build up spatial structure in the form of concentration 
variations. Information-theoretic quantities for analysing such structure formation may be 
based on probability distributions (densities) that correspond to the spatially distributed 
concentrations in the system. In order to be able to analyse how information is distributed 
over different length scales, we introduce a “resolution” operator that can be used to modify 
how sharp a distribution appears. The goal is to present a formalism that can be used to 
decompose the total information in a pattern into contributions from both different positions 
and different length scales. 
 

6.1.1 Resolution dependent probability density 
In our analysis we will use a normalised probability density p(x), as in Eq. (3.27-28),  
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dx p(x) =1
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$  . (6.1) 

 
In case of picture, p(x) can be the light intensity of  a certain color, or for a chemical system, 
the concentration profile for a certain component; in both cases scaled to a normalised 
probability density.  
 
The formalism is here presented for a one-dimensional system, but the extension to higher 
dimensions is straightforward. When applied to systems of finite length L, the integral limits 
are 0 and L, respectively. We also have a reference, or a priori, distribution p0(x). In case of a 
finite system, we usually assume that the a priori description is a uniform distribution.  
 
The amount of information that we get when we observe a spatial distribution p(x) describing 
the spatial structure of the system is given by the Kullback information with the a priori  p0(x) 
as the reference, 
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We now introduce the resolution dependent distribution, where a resolution parameter r 
determines how well the original distribution  p can be detected. The resolution dependent 
distribution is the result of a Gaussian blur operation applied to the original one — an 
operation available in various types of image analysis software. Mathematically, the reduced 
resolution is achieved by taking the convolution of the original distribution with a Gaussian of 
width r,  
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Parameter r = 0 means perfect resolution while r → ∞ leads to a Gaussian with increasing 
width approaching a completely uniform pattern. Any of the two expressions in Eq. (6.3) can 
be used to calculate the resolution dependent distribution. For some of the theory we develop, 
it will be useful to express the Gaussian blur operation as a differential operator. This can be 
achieved by making a series expansion of p(x + rz) as follows, 
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The exponential function in the final expression should be viewed as a series expansion, 
involving terms of even powers of the differential operation with respect to x. By taking the 
derivative of the last expression with respect to r we find that the probability density fulfills 
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It is also clear that the following properties hold, 
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p(r;x) > 0,

p(0;x) = p(x),

dx p(r;x)" =1,

dx x p(r;x)" = dx x p(0;x)" ,

 (6.6) 

 
where the last one states that the Gaussian blur does not shift the “centre of mass” of the 
distribution. 
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As a first example, consider a Gaussian distribution of width b,  
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By using Eq. (6.3), we find that the resolution dependent distribution p(r; x)  is another 
Gaussian with a larger width (b2 + r2)1/2, 
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Figure 6.1  (a) The Gaussian probability density p(r; x) as function of position x and resolution r. (b) 
Same plot for sinusoidal probability density. Periodic boundary conditions are assumed at x=0 and 
x=1. 
 
For another example, consider a sinusoidal probability density, 
 
 

! 

p(x) =1+ 1

2
sin(4" x)  , (6.9) 

 
on the interval x ∈ [0, 1], which makes it normalised. One can show, using Eq. (6.3) and 
assuming periodic boundary conditions, that the resolution dependent density in this case 
takes the form 
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p(r;x) =1+ 1

2
e
"8# 2r 2

sin(4# x) . (6.10) 
 
The example distributions are illustrated in Fig. 6.1. 
 
The worsening of the resolution can be seen as a diffusion process applied to the resolution 
dependent distribution p(r; x). If we make a variable transformation in Eq. (6.5), replacing 
r2/2 by t, we get a diffusion equation, 
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d

dt
p(t;x) =

d
2

dx
2
p(t;x) . (6.11) 
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This means that the distribution p(r; x) can be derived by running a diffusion process the time 
t = r2/2. In this perspective, Fig. (6.1) illustrates how diffusion would affect the original 
distributions as time goes on along the r axis. 

6.1.2 Decomposition of information 
We will now consider the total information in the pattern, expressed by the Kullback 
information in Eq. (6.2), and we will derive a decomposition of this quantity into 
contributions from different positions and different length scales, or resolution levels r.  
 
First we assume that the resolution dependent distributions p(r; x) and p0(r; x) are 
indistinguishable in the limit r → ∞,  
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p0(r;x)
=1. (6.12) 

 
That this is a reasonable assumption can be seen from the fact that the ratio of any two 
Gaussian distributions (with centres of mass being finitely separated) always approches one 
when the resolution r goes to infinity, cf. Eq. (6.8). 
 
We can use these relations to make a decomposition of the Kullback information, Eq. (6.2), 
with respect to both position and resolution length, 
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 (6.13) 

 
In the last step we have used the the equivalence between 

! 

" /"r  and 

! 

r d
2
/dx

2  from Eq. (6.5). 
By partial integration of the last expression this can be rewritten as 
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 (6.14) 

 
where 
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p(r;x)
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 . (6.15) 
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It is then clear that Eq. (6.14) is a double decomposition of the Kullback information with 
respect to both resolution and position. The “local” weighted information k(r, x) is always 
positive. In the next chapter on chemical self-organising systems, we will use this formalism 
to study the flow of information, both in space and in length scales. In the next section on 
fractals, we will relate resolution dependent information quantities to the concept of fractal 
dimension. 
 
In most cases we will consider a reference distribution that is uniform, at least approximately. 
For a limited system, i.e., a finite interval of the real axis, this is reasonable to assume. This is 
also the case that will be studied for chemical pattern formation in the next Chapter. For an 
unbounded space, we typically assume p0 to be a very broad Gaussian, which can be 
approximated with a uniform distribution over the region where p typically exhibits spatial 
pattern. In these situations, assuming a constant p0, the local information density k(r, x) can be 
expressed as 
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From this expression, it is clear that the locla information is high at the slopes of the 
probability density. For an image this means that information is primarily located at the edges 
of the objects, with edges being defined as slopes in the intensity (or probability density) p. 
 
For the examples discussed above, we find, using Eq. (6.16), the for the Gaussian, the 
information density takes the form, 
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and for the sinusodial density, we get 
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ksinusoidal (r,x) = 4e"16#
2
r
2

# 2
r
2
cos(4# x)2 1+ 1

2
e
"8# 2r 2

sin(4# x)( )  .  (6.18) 

 
For both these examples, it is clear, see Fig. 6.2, that there are certain length scales and 
positions for which we have a higher information density. These length scales are then related 
to the width of the structure. 
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Figure 6.2  The information density k(r, x) for the two examples of Fig. 6.1: (a) the Gaussian 
probability density, and (b) the sinusoidal probability density. 
 

6.2 Fractals patterns, dimension, and information 

6.2.1 Dimensions 
The word “dimension” has several definitions in mathematics. Behind the length of the 
coastal line of Sweden, there may be several dimension numbers hiding. A line or a curve can 
be considered a one-dimensional object — characterised by the fact that it can be divided into 
two objects by removal of a point. At the same time the object may be placed in a space of 
higher dimension. Furthermore, even if the coastal line is one-dimensional and constrained by 
a two- or three-dimensional space, it may be so irregular that its length is infinite. If a curve is 
sufficiently dwindling it may be sufficiently close to any point in a two-dimensional object, 
and one may consider the curve two-dimensional. 
 
The first dimension number we mentioned is related to the topology of an object — a curve 
may be divided by removing a point, a surface may be divided by removing a curve, etc — 
and therefore we call this the topological dimension, DT, of the object. The object is placed in 
a space with a certain Euclidean dimension, DE. The third dimension number is related to how 
dwindling, for example, a curve is, and as we have indicated this number may be larger than 
the topological dimension of the object. This number is actually defined so that it does not 
need to take only integer numbers, and therefore it is called the fractal dimension, DT, of the 
object. An object is said to be fractal if its fractal dimension is larger than the topological 
dimension, DF > DT. In general, for these dimension numbers, we have 
 
 

EFT
DDD !!  (6.19) 

 
There is also another perspective on the dimension of an object, related to the resolution with 
which the object is observed. The following example, by Benoit Mandelbrot (1983), 
illustrates this: 

“… a ball of 10 cm diameter made of thick thread of 1 mm diameter possesses (in latent 
fashion) several effective dimensions. To an observer placed far away, the ball appears as 
a zero-dimensional figure: a point. (…) As seen from a distance of 10 cm resolution, the 
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ball of thread is a three-dimensional figure. At 10 mm it is a mess of one-dimensional 
threads. At 0.1 mm, each thread becomes a column and the whole becomes a three-
dimensional figure again. At 0.01 mm, each column dissolves into fibers, and the ball 
again becomes one-dimensional, and so on, with the dimensionality crossing over 
repeatedly from one value to another. When the ball is represented by a finite number of 
atomlike pinpoints, it becomes zero-dimensional again.” 

 

6.2.2 Fractal dimension 
In the following, we sketch on a definition of the fractal dimension, based on how 
characteristic lengths of objects scale when resolution is changed. Suppose that we have an 
object in a DE-dimensional space, and that we want to cover this with spheres of a certain 
radius r, corresponding to the resolution. Let us assume that we find that N(r) spheres are 
needed for this, where, of course, a smaller r requires a larger number of spheres, see Figure 
7.1. 
  

 
Figure 6.2.  The number of spheres with radius r that are needed to cover a curve is proportional to 

! 

r
"D , where D is the fractal dimension of the curve. In the figure, the number of spheres doubles as the 

radius is reduced to ahlf the original, implying a curve dimension D = 1.  

 
If the object is a straight line the number of spheres N(r) will be proportional to 1/r, see 
Figure 6.2, while in the case of a flat two-dimensional surface N(r) will be proportional to 
1/r2. We introduce the resolution dependent fractal dimension, D(r), characterised by  
 
 

! 

N(r) ~ r
"D(r) (6.20) 

 
We use this relation to define the fractal dimension by 
 

 

! 

D(r) = "
#lnN(r)

#ln r
 (6.21) 

 
In general, the fractal dimension depends on the resolution r, but in most constructed objects 
found in the literature on fractal patterns there is a scale invariance that make the fractal 
dimension independent of the resolution, see, for example, Figure 6.3. 
 
The fractal dimension may also be defined by scaling of the measured length (in case of 
DT = 1) of an object when resolution is varied. One may assume that the length scales as 
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L(r) ~ r
1"D(r ) (6.22) 
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For the coast line of England one has found, within certain limits of r, that the scaling leads to 
a fractal dimension of D = 1.2, while for a straight line, the dimension is 1 since the length 
does not depend on the resolution (at least if resolution is finer than the length of the object). 
A curve for which new dwindling structures appear when resolution is increased will have a 
resolution dependent length and a fractal dimension larger than 1. 
 
The fractal dimension of the Koch curve in Figure 6.3, can be derived as follows. At each 
step, resolution is increased from r to r/3, i.e., an improved resolution by a factor of 3, and the 
observed length is increased from L to 4L/3, or by a factor of 4/3. The dimension D can then 
be written as 
 

 

! 

D(r) =1"
#lnL(r)

#ln r
=1"

lnL " ln(4L /3)

ln r " ln(r /3)
=
ln4

ln3
$1.26  . (6.23) 

 
In this example the fractal dimension does not depend on the resolution. The object is 
constructed so that new structure (with the same characteristics) appears whenever resolution 
is increased. 
 

  
 

Figure 6.3.  The Koch curve is a fractal object with dimension ln 4/ln 3 = 1.26, in which new 
structures appear as soon as resolution is increased. 

 



 

 83  

6.2.3 Dimension and information 
If resolution is improved when we observe an object, we may gain information, or the other 
way around, if the resolution becomes worse (r increases) we may loose information. In a 
three-dimensional space, a point looses information in all three directions, since we get less 
accurate description on three of its coordinates. For a line, on the other hand, a blurred picture 
only reduces information in two directions, perpendicular to the extension of the line. This 
indicates that there may be some connection between the dimensionality of an object and how 
information quantities change when resolution is varied. 
 
Suppose that our object can be characterised by a probability density p(x) in a DE-dimensional 
Euclidean space, and further that we have an a priori probability density p0 that is uniform. 
The decomposition of the Kullback information with respect to both position and resolution, 
Eq. (6.13), can then be written 
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We now define the information-theoretic dimension 
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as the dimensionality of the probability density at resolution r (Eriksson and Lindgren, 1987). 
The following argument illustrate that this is the information-theoretic counterpart to the 
fractal dimension defined in Eq (6.21). By partial integration, assuming p'(r; x) ln p(r; x) → 0 
when x → ∞, we can rewrite Eq. (6.25) as 
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  (6.26) 

 
In order to illustrate how this is related to the fractal dimension defined in Eq. (6.21), we 
approximate the probability density p(r; x) with a uniform distribution over the N(r) spheres 
covering the object as it was illustrated in Figure 6.2, i.e., 
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p(r;x) ~
1

N(r) r
DE

. (6.27) 

 
Then the dimension d(r), Eq (6.26), can be simplified, 
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illustrating the connection between information-theoretic dimension d(r) and fractal 
dimension D(r), see Eq. (6.21).  
 

6.3 Exercises 
 
6.1 What is the dimension d(r) of a Gaussian distribution of width b (variance b2)? How can 

this be interpreted? Discuss the relation between r and b. 
 
6.2 Dimension of a ring. Consider a pattern in a two-dimensional space that is described as 

a ring with a certain thickness a and a certain diameter 10a, schematically depicted in 
the figure below. 

 
 

 a 

10 a 

 
 The ring may be described by a uniform probability distribution p(x, y) that is constant 

within the grey area and zero elsewhere. By introducing the resolution dependent 
probability density p(r; x, y), one may study how the entropy S(r) changes when the 
resolution is made worse (r increases). 

 
 Discuss how the quantity 
 

  !"

"

),;(

1
ln),;(

yxrp
yxrpdxdy

r
r  

 
 depends on r. It should not be necessary with calculations (which are quite 

complicated), but you should be able to discuss this in a more schematic way, relating 
resolution level r to characteristic lengths in the system, for example a. 
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7 Pattern formation in chemical systems 
 
In this chapter we apply information theory to chemical pattern formation, often called 
chemical self-organising systems. Here self-organisation refers to a system that spontaneously 
builds up or sustain spatio-temporal structure in the form of concentration variations. The 
patterns formed and the dynamics is not controlled by anything outside the system. The first 
theoretical investigation of chemical pattern formation was done by Alan Turing in his classic 
paper (1952), where he demonstrated that simple mechanisms in reaction-diffusion dynamics 
can account for symmetry breaking necessary for morhogenesis. Self-organising systems, or 
dissipative structures, that also go beyond chemical pattern formation have been extensively 
studied by, for example, Prigogine and Nicolis (1977) and Haken (1984). 
 
There are several types of information quantities involved in pattern formation processes, and 
they are typically of different orders of magnitude. A first piece of information when one is 
presented with a specific chemical system is the selection of molecules involved, both those 
that are present in the system and those that are allowed to flow over the system border. All 
this can loosely be referred to as genetic information, i.e., information on which components 
and thus also which processes that will be part of the self-organising chemical system. The 
amount of this information is not vary large, as is reflected for example by the size of 
genomes in living organisms with the order of 104 genes.  
 
In biological systems all necessary information is not genetically encoded, but there is also 
compositional information in the transfer of chemicals and structures from the mother to the 
daughter cells. There are proposals expressing the idea that this type of information may have 
played an important role in the origin of life (Segré et al, 2000).  
 
Another type of information enters when a specific self-organising system starts to develop a 
pattern. The typical form of the pattern may be determined by the reaction scheme involved, 
but in many cases fluctuations in concentrations or other disturbances may affect the exact 
pattern that is formed. An example of that is the difference in finger prints between identical 
twins. One may view this as an information flow from fluctuations to the actual pattern that is 
observed. This flow is of the same character as the flow from micro to macro that we find in 
chaotic systems (Shaw, 1981). This information flow can characterised by the Lyapunov 
exponent, an important quantity for the analysis of chaotic dynamical systems. This 
perspective will be brought up in the next Chapter presenting an information-theoretic 
perspective on low-dimensional chaotic systems. 
 
The focus of the approach presented here is a third type of information quantity, the 
information capacity in free energy or exergy, based on the information-theoretic formalism 
presented in Chapter 6. This is then combined with the geometric information theory of 
Chapter 7. The starting point is the free energy of a chemical system, involving both the 
deviation from homogeneity when a spatial pattern is present and a deviation from 
equilibrium (when the system is stirred). This free energy is expressed as the total information 
of the system, and in our approach we decompose this into information contributions from 
both different positions and different length scales. The connection with thermodynamics then 
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allows us to view the inflow of free energy, due to the fact that the system is open to an 
inflow of a fuel and outflow of waste products, as an inflow of information capacity. This 
inflow allows for an accumulation of information in the system when a pattern is formed. 
Entropy production due to chemical reactions and diffusion leads to desctruction of 
information – an information loss that can be balanced by the information capacity inflow to 
maintain the chemical pattern. The following presentation is based on work previously 
published in (Eriksson and Lindgren, 1987; Eriksson et al, 1987) which applied to closed 
chemcial systems, which was later extended to open reaction-diffusion systems (Lindgren et 
al, 2004). 
 

7.1 Information analysis of chemical pattern formation 
 
A closed self-organising system is driven by the exergy that is initially present in the form of 
chemical energy. We assume that the system has the same pressure and the same temperature 
as the environment. According to Eq. (5.20), the exergy can be written as a Kullback 
information 
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where the distributions P0 and P denote the normalised distributions pi0 = Vci0/N and 
pi = Vci/N, respectively. The reference system P0 represent a system in reaction equilibrium, 
and the non-equilibrium of the present system, characterised by P, can be interpreted as the 
system being prepared with an abundancy of a fuel that may be used in the process of 
structure formation. In the case of an open system where chemical substances are allowed to 
pass the system border, the concentrations in the system may be kept off equilibrium so that 
exergy (free energy) is available both for the built-up and the maintenance of the spatial 
patterns.  

7.1.1 Chemical and spatial information 
We shall use Eq. (7.1) as a starting point for our combined information-theoretic and 
thermodynamic analysis of the system. Since homogeneity is assumed to be broken, we 
introduce spatially varying concentrations ci(x), expressed in the probabilistic form 
pi(x) = Vci(x)/N. (We assume that the number of molecules per unit volume, N/V, does not 
depend on position.) This results in probability distributions pi(x) over the different molecules 
that are normalised at each position. Then, Eq. (7.1) is replaced by  
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where the information K is now an integral over Kullback information quantities for each 
position in the system, 
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We shall use the average concentration within the system, defined by 
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in order to decompose the total information K in Eq. (7.2) into two terms, one that quantifies 
the deviation of the average concentrations from equilibrium, Kchem, and one that quantifies 
the deviation from homogeneity, i.e., the presence of spatial structure, Kspatial, 
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Therefore we define the spatial information, Kspatial, 
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and the chemical information, Kchem, 
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and we can write the total information K as 
 
 

! 

K = Kspatial + Kchem  . (7.8) 
 
Thermodynamically, the chemical information is related to the presence of a chemical non-
equilibrium even when spatial variations are not taken into account. This means that there is 
an abundance of “fuel” and a low level of “waste” products in the system. The spatial 
information reflects the presence of a non-equilibrium for diffusion processes, i.e., that there 
is some spatial pattern in the system.  
 

7.1.2 Decomposition of spatial information in a chemical pattern 
We shall continue our analysis by further decompose the structural information into 
contributions from position and length scales, similar to what we did in Chapter 6. For 
simplicity, let us assume that we have a chemical system, characterised by concentrations 
ci(x, t) for the different molecules that are normalised at each position x, 
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In order to be able to analyse contributions from different length scales, we introduce a 
resolution dependent concentration 
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˜ c 
i
, cf. Eq. (6.3), by convolution of the original one ci with 

a Gaussian, 
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We will use the last expression as the resolution operator, but when calculating 
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˜ c 
i
, the first 

expression will be used. We assume that this operation handles the boundary conditions so 
that in the limit of r → ∞, i.e., complete loss of position information, the concentrations equal 
the average concentrations in the system10, 
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The derivation of a decomposition of the total information K into different contributions will 
now be slightly different from the one in Chapter 6, since the distributions are now 
normalised in each position (instead of over the system volume). Our starting point, in 
Chapter 6, for decomposing the total information K,  
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illustrates that the chemical information Kchem can be detected regardless of how bad the 
resolution is. This is obvious, since complete loss of resolution results in average 
concentrations in the system which determines the chemical information. This means that the 
spatial information Kchem can be decomposed in a similar way as in Chapter 6, 
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 (7.13) 

 
In the last step a partial integration is invoved, including an assumption of periodic (or non-
flow) boundary conditions. The equilibrium concentration ci0 in the last expressions could be 
removed (as it disappears under the differential operation), but we keep it as it will serve a 

                                                
10 In the simple examples we study, this follows immediately from the assumption on preiodic boundary 
conditions. 
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purpose in later derivations. In the last expression we recognize a local information density, 
k(r, x), which can be written in three different forms, of which the last one will be used later,  
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 (7.14) 

 
 
The information density k(r, x) can be integrated over space so that we achieve the spatial 
information at a certain length scale, 
 
 

! 

kspatial (r) = dx k(r,x)" . (7.15) 
 
A schematic illustration of this decmposition is shown in Fig. 7.1, illustrating a chemical 
patterns in a two-dimensional space with its variations along the axis of resolution r.    
 
 

  
 
Figure 7.1.  An illustration of a two-dimensional chemical pattern at different levels of resolution r, 
along with a schematic illustration on how the spatial information may be decomposed between 
different length scales. The chemical information can be detected regardsless of how bad the 
resolution is and it is therefore located at infinite r. 
 
 

7.1.3 Reaction-diffusion dynamics  
The concentrations are time-dependent since they vary in time due to diffusion, characterised 
by diffusion constants Di, and chemical reactions, characterised by reaction functions 
Fi(c(x, t), where c = (c1, …, cM). The equations of motion governing the dynamics is then the 
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ordinary reaction-diffusion equations plus a term Bi(ci(x, t)) capturing flows across the system 
border in the case of an open system, 
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The term Bi(ci(x, t)) typically is in the form of diffusion-controlled flows. We assume that the 
in- and out-flow is directly connected to the whole system. For example, in a two-dimensional 
system, this means that there is a flow across the “surface” of the system in the direction of a 
third dimension. We can view this as if the reaction volume everywhere is in contact with a 
reservoir having a constant concentration ci, res which results in an inflow 
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with bi being a diffusion constant. (A negative value of that expression reflects an outflow.)  
 
The equations of motion for the resolution dependent concentrations are derived from 
Eq. (7.16) by applying the resolution operator, see Eq. (7.10), to both sides of the equation, 
 

 

! 

˜ ˙ c 
i
(r,x,t) = D

i
"

2 ˜ c 
i
(r,x,t) + exp( r

2

2
"

2
)F

i
(c(x,t)) + exp( r

2

2
"

2
)B

i
(c

i
(x,t)) =

= D
i
"

2 ˜ c 
i
(r,x,t) + exp( r

2

2
"

2
)F

i
(c(x,t)) + b

i
(c

i, res # ˜ c 
i
(x,t))

 (7.18) 

 
Since the reaction terms typically are non-linear the resolution operator need to remain in 
front of the reaction function Fi. 
 

7.1.4 Flows of information in a closed chemical systems 
In a closed homogenous chemical system, prepared in an out-of-equilibrium state, all 
information is initially in the form of chemical information, Kchem, corresponding to an initial 
amount of exergy. Chemical reactions consume the exergy, according to the 2nd law of 
thermodynamics, and the chemical information thus decays. If spatial structure is built up, we 
find that some of the information, at least temporarily, is transformed to spatial information, 
Kspatial. If the system remains closed, though, such spatial structures cannot remain and the 
system approaches a homogenous equiliobrium state. In an open system, a steady inflow of 
chemical energy may keep the chemical information at a high level, and spatial structures 
may be supported. First we will discuss the closed system and derive a set of information flow 
quantities, and in the next section the system will be open for molecular flows across the 
boundary which will result in additional effects. So to start with we neglect the flow term B in 
Eqs. (7.16) and (7.18). 
 
Let us discuss briefly some thermodynamic characteristics of the system. The chemical 
system, described by the dynamics Eq. (7.16) but excluding the result of the in- and out-flow 
(which will be treated separately), results in a thermodynamic entropy production σ (in units 
of Boltzmann’s constant) according to 
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The entropy production is determined by one term corresponding to the entropy produced due 
to diffusion within the system and one term given by the reactions that tend to even out the 
chemical non-equilibrium in the system. The entropy production certainly leads to a decay of 
the information in the system — decay of structural information as well as of chemical 
information. 
 
We shall make an information-theoretic description of how information is flowing in the 
system that connects to the thermodynamic loss of information due to entropy production. 
This will be formulated in a continuity equation for information density k(r, x, t), taking into 
account flows both in scale (r) and in space (x), see Fig. 7.2.  
 
In the limit of r → ∞ we cannot distinguish any spatial structure, but the chemical information 
Kchem is still present, unaffected by the resolution parameter. In a decomposition of the total 
information this part can therefore be considered as present at the r → ∞ limit. The chemical 
information will be consumed by the chemical reactions and we should therefore expect that a 
proper definition of information flow shows how information will flow in the direction 
towards smaller length scales r. If the system gives rise to spatial structure, that should be 
captured in the continuity equation, resulting in a temporal accumulation of structural 
information.  
 

 
Figure 7.2.  A schematic picture of information (capacity) flows in a chemical pattern formation 
system. The pattern is characterised by an information density k(r, x, t) distributed over spatial 
dimensions as well as over different length scales r. Information flows both in space and in scale, 
where the flow is destroyed when it gets down to the microscopic level. Here information disappears 
into microscopic degrees of freedom due to entropy production. Information capacity enters the 
system at the very large scale due to a diffusion-controlled inflow of chemical information or Gibbs 
free energy. A pattern is formed when information that flows downwards in scale is aggregated at 
certain positions as described by the continuity equation. 
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It is reasonable to think that information is leaving the system, through the thermodynamic 
entropy production, at the finest length scales of the system, i.e., at r = 0. At this point 
information leaves the macroscopic description that we have of our system, and the 
information is spread out on microscopic degrees of freedom. Therefore, we define the 
information flow jr(r, x, t) in the direction of smaller r, at the border r = 0, to be equal to the 
chemical entropy production, 
 
 ),(),,0( ttj

r
xx !=  . (7.20) 

 
To define this flow for general resolution values r, we generalise by introducing the resolution 
operator into the expression for entropy production, 
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In the limit of r → ∞, this information flow can be written 
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  (7.22) 

 
where we have used the dynamics, Eq. (7.18), and Eq. (7.11). Note that this expression is 
equal to the decay of chemical information, –dkchem/dt, since 
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since Σi dci/dt = 0 due to the normalisation. In general it holds that dkchem/dt ≤ 0 (except for 
extreme cases), which means that there is a positive flow of information jr(∞, x, t) at the 
infinite length scale limit in the direction of smaller length scales, similar to what we have at 
the other limit, r = 0. The interpretation is then that information flows from its origin as 
chemical information down through the length scales, temporarily halting if spatial structure 
is built up, but sooner or later continuing to the finest length scale where it disappears as 
entropy production. 
 

7.1.5 A continuity equation for information in the case of a closed system 
We can view the information density k as a generalised form of exergy (or free energy). By 
the flow across length scales jr we have accounted for the destruction of information from 
entropy production in chemical reactions and diffusion within the system. We will now derive 
a continuity equation for information which will connect the previously defined flow across 
length scales, jr(r, x, t), with the change of local information k(r, x, t) and a flow of 
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information in space j(r, x, t). For a closed chemical system such a continuity equation takes 
the form 
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The equation states that, for a closed system, the local information density k changes due to 
accumulation of of the information flows across length scales (in the downward direction) and 
across space. This continuity equation then implies a definition of the 
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If we require that j(r, x, t) = 0 when 

! 
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i
 is uniform and that j is rotation-free (i.e., does not 

contain any term ∇×A), the spatial flow is defined 
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Note that the spatial flow depends on the presence of reactions. This means that when 
reactions are not present, the only flow is the one across length scales. This is a direct 
consequence of the fact that the resolution operator, the Gaussian blur, is equivalent to a 
diffusion process. The flow across length scales, though, depends on both reactions and 
diffusion. This should be expected since it is a generalisation of the entropy production, and 
entropy is produced in both these processes.  

7.1.6 A continuity equation for information in the case of an open system 
Finally, we open the system for inflow and outflow of molecules, given by the term B in the 
reaction-diffusion dynamics, Eq. (7.16). In addition to the terms in the continuity equation for 
the closed system, we need to introduce a local source/sink term J(r, x, t) which will capture 
the effects from the system being open. The continuity equation for an open system then takes 
the following form, 
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jr(r,x,t) #$ % j(r,x,t) + J(r,x,t) . (7.27) 

 
For an open system, there are two ways in which the information characteristics of the system 
is directly affected from the flow of molecules across the system border. First, an inflow and 
an outflow of components changes the average concentrations of the transported components 
and in that way the chemical information is changed. For a driven chemical system, with an 
inflow of a fuel component and an outflow of a product, the flow across the system boundary 
typically keeps the chemical information at a level sufficient for driving the information flows 
in the system. But, there is also a direct influence that the inflow may have on spatial patterns 
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in the system. For example, diffusion into or out of the system of a component that has a 
spatial variation, directly leads to that spatial pattern being less accentuated, and in that way 
the flow destroys the local information density 

! 

k(r,x,t) .  
 
The negative effect on informaiton density k from the diffusion over the system boundary is 
captured by the sink term J in the continuity equation. For a diffusion controlled flow, as in 
Eq. (7.17),  we get (after some calculations) the following expression for J, 
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which shows that J is a sink for information. In conclusion we have  
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These quantities can be integrated over either position space x or resolution length scale r in 
order to derive aggregated information quantities like k(r, t), i.e., the resolution-dependent 
information, or k(x, t) and j(x, t) which are the normal information density and the 
corresponding information flow. If we integrate the continuity equation (7.27) over resolution 
lengths r, we get the following balance equation for the information density k(x, t), 
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k(x,t) +" # j(x,t) + J(x, t) +$(x,t) + ˙ k chem (x,t) = 0 . (7.30) 
 
Here the entropy production and the change in chemical information come from the upper and 
lower limits of the flow jr. 
 
In the next section these information-theoretic concepts will be applied to a simple model of a 
chemical self-organising system. 
 

7.2 Application to the self-replicating spots dynamics 
 
We apply the formalism to the pattern formation of the “self-replicating spots” system (Gray 
and Scott, 1984; Pearson, 1993; Lee et al, 1993),  
 
 U + 2V → 3V,  (7.31) 
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with the reaction-diffusion dynamics 
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We have introduced a very slow back reaction (kback = 10–5) in order to get the relationship 
between equilibrium concentrations of U and V defined by the reactions.  
 
In Fig. 7.3, the dynamics is illustrated starting from an initial state (left) with a square of high 
concentration of V. As the system evolves four concentration peaks (spots) emerges from the 
square, and these spots reproduce by growing and splitting until the system is filled with spots 
(middle and right). In the process, spots may disappear, which leaves space for other spots to 
reproduce. In the lower part of the figure, the decomposition of the information in the pattern 
with respect to scale is plotted for the three snapshots above (at time 0, 1000, and 7000, 
respectively).  
 
It is clear that the initial state has a longer characteristic length as detected by the information 
density. When the system produces the spots at the significantly shorter length scale, 
information is found both at the old length, now due to the size of the cluster (middle), and at 
the length scale of the spots. When the square distribution has been completely decomposed 
into spots, no information is left at the initial length scale.  
 

 
 
Figure 7.3. Top row: The concentration of the chemical V in the system at three times; t = 0, 
t = 1000, and t = 7000 steps. White corresponds to zero concentration, and black corresponds to a 
concentration of one half. Bottom row: The structural information k(r, x), integrated over the system, 
as a function of the resolution r for the same time steps as above. The length of the system is 1, DU = 2 
DV = 0.05, 
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ˆ D 
U

= 0.02 , k = 0.058. [Figure from (Lindgren et al 2004).] 
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In Fig. 7.4, we show the information density over the system for three different length scales 
after long time (upper part), and the information flow in scale, jr, for the same state (lower 
part). At low resolution, or large r (right), the information density is low and captures 
structures of longer lengths, while at finer resolution, small r (left), the information density is 
large and reflects the pattern of spots. Note that each spot is seen as a circle in the information 
density picture, since the information is sensitive to gradients in the pattern. The information 
flow in scale, jr, is close to homogenous for large r (right), but when information moves on to 
finer scales of resolution, the spatial flow j redistributes the flow so that a higher flow jr is 
obtained at the concentration peaks. At finest resolution, r = 0, the information leaves the 
system as entropy production, which is mainly located to the concentration peaks where the 
chemical activity is high. 
 

 
 
Figure 7.4. Top row: The structural information in the system at t = 10 000 steps, for three values of 
the resolution r; r = 0.01, r = 0.05, and r = 0.1. Bottom row: The information flow jr(r, x, t). The 
length of the system is 1, DU = 2, DV = 0.05, 

! 

ˆ D 
U

= 0.02 , k = 0.058. [Figure from (Lindgren et al 
2004).] 
 
 

7.3 Exercises 
 
7.1 Prove the equality between the two last expressions in Eq. (7.14). 
 
7.2 Show how the entropy production, Eq. (7.19), is related to the decay of total 

information ∫dx K[co; c(x, t)], using the reaction-diffusion dynamics for a closed system. 
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8 Chaos and information 
 
In chemical self-organising systems one can identify a tendency of information to flow from 
larger to smaller length scales, as we have discussed in the last Chapter. Still, it is clear that 
noise or fluctuations are important to break symmetries and to initiate the formation of spatial 
structure. Quantitatively this information flow from the noise, or from the microscales of the 
system, is very small and is hidden by the much larger thermodynamically related flow 
towards the microscales. 
 
In chaotic systems, noise is also of crucial importance. Chaos may even be characterised by 
the extent to which a system is sensitive to noise. The Lyapunov exponents of a dynamical 
system quantifies how noise is amplified in the dynamics. In this Chapter, we shall make an 
information-theoretic interpretation of these exponents and relate them to an entropy concept, 
the measure entropy. 
 

8.1 Basic concepts 

8.1.1 Iterated maps, fixed points, and periodic orbits 
In this presentation, we only consider time-discrete one-variable systems, with state x(t) ∈ R, 
with a dynamics given by the simple equation 
 
 

! 

x(t +1) = f (x(t))  , (8.1) 
 
where f is a differentiable real-valued function on R, f: R → R. The formalism can be 
extended to higher dimensions and to continuous time, see for example the classic review by 
Eckman and Ruelle (1985). 
 
A dynamical system of this type has a number of possible types of behaviour. The system can 
be in a fixed point, x = f(x), and nothing changes. The trajectory of the system may also be on 
a cycle with a certain period T, characterised by x(T) = fT(x(0)) = x(0) and x(k) ≠ x(0) for 
0 < k < T. Fixed points and periodic orbits may be stable or unstable. Instability means that an 
arbitrarily small disturbance is sufficient for taking the system away from the point (or the 
orbit). A fixed point is unstable if |f´(x*)|>1, since any disturbance will result in a trajectory 
that moves away from x*. Similarly, a periodic orbit of period T is unstable if the 
corresponding fixed point of fT is unstable. 
 
The dynamics can be said to be chaotic if the trajectory does not approach a fixed point or a 
periodic orbit and if it does not diverge. In this case, the trajectory of the system is 
approaching a (usually complex) set of points in state space, called a strange attractor. 
 

8.1.2 Probability densities and measures on the state space   
Dynamical systems are often characterised by quantities that are averages over either time or 
state space (here R). Such a spatial average is based on a probability measure µ on the state 
space, such that µ(E) can be interpreted as the probability for finding the system in a certain 
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subset E ⊆ R. We are usually interested in an invariant measure11, i.e., a probability measure 
that does not  change under the dynamics (9.1), 
 
 

! 

µ( f "1(E)) = µ(E)  , (8.2) 
 
where E is a set of points in R, and f–1(E) is the set of points that under the map f is 
transformed to E, i.e., f(f–1(E)) = E. There may be several invariant measures for a dynamical 
system. If there is a fixed point x*, then a point distribution δ(x– x*) in that point is an 
invariant measure, even if the fixed point is unstable. Any combination of invariant measures 
is also an invariant measure. In order to eliminate invariant measures that correspond to 
unstable modes of the dynamics one introduce the so-called physical measure, by adding 
noise to the dynamics and using the resulting measure when reducing the noise to zero. Thus, 
the physical measure does not include contributions from any of the single unstable modes 
(fixed points or periodic orbits), but if the system is chaotic the resulting measure is reflecting 
how the states are spread over the attractor. The physical measure can be composed of several 
invariant measures (for example from several stable fixed points or periodic orbits). If an 
invariant measure cannot be decomposed into parts that are invariant, the measure is called 
ergodic. The implications of this is that an average (of any function ϕ) calculated using the 
ergodic measure is identical (almost always) to a temporal average following the trajectory of 
the system. This is the ergodicity theorem, 
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for almost all initial states x(0). 
 

8.2 Lyapunov exponent 
 
A chaotic system is sensitive to small changes in the initial state. This tendency to amplify 
small perturbations is quantified by the Lyapunov exponent of the system (or several 
exponents in the case of systems in higher dimensions). 
 
Suppose that there is a small change δx(0) in the initial state x(0). At time t this has changed 
to δx(t) given by 
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where we have used the chain rule to expand the derivative of ft. In the limit of infinitesimal 
perturbations δx(0) and infinite time, we get an average exponential amplification, the 
Lyapunov exponent λ, 
 

                                                
11 This corresponds to a stationary probability distribution when one has a system with a finite state space, for 
example a finite automaton. 
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If the system is characterised by an ergodic measure µ we can use the ergodicity theorem to 
express the Lyapunov exponent as 
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If the Lyapunov exponent is larger than zero, the system amplifies small perturbations and we 
have chaos, while if the exponent is negative the system is stable in a fixed point or periodic 
orbit.  
 

8.2.1 The Lyapunov exponent as an information flow from “micro” to “macro” 
An illustration for the Lyapunov exponent as an information flow from smaller scales is given 
by the following example. Suppose that we determine the position of the system at a certain 
time t0, with some resolution δ, implying that we can describe the position as a uniform 
probability density over a certain interval [x0–δ, x0+δ]. In n time steps, the dynamics will 
transform this uncertainty interval to  
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if δ is small enough. Assuming a chaotic system, the new interval will be larger, which means 
that we have a less good descriptions of the future position of the system. Let us use this as an 
a priori description of the system position at this future point in time, using a uniform 
probability distribution that (by normalisation) equals 
 

 

! 

p
0

=
1

2"
df

n
(x

0
)

dx

. (8.8) 

 
In these n time steps the dynamics will bring the system to some point within this interval. If 
we observe the system at the new time, using the same level of resolution, we get a new 
(better) estimate of the position, characterised by a smaller interval (length 2δ) and a 
probability p = 1/(2δ). The Kullback information associated with this observation is then 
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In the limit of arbitrarily fine resolution and infinite time, the information I gained per time 
step is 
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This illustrates the interpretation of the Lyapunov exponent as a measure of information flow 
from finer to larger length scales. 
 

8.3 Dynamical systems entropy and information flow 
 
In earlier chapters we have characterised disorder in symbol sequences by the use of 
entropies.  We shall make a similar approach here, to characterise the noise amplification in 
information-theoretic terms. 
 
Consider again a dynamical system characterised by the iterative map f(x), and suppose that it 
generates an ergodic measure µ. Let A = (A1, A2, …, Ar) be a decomposition of the state space 
into non-overlapping subsets. For each part Aj we let f–kAj denote the set of points that results 
in Aj if f is applied k times, i.e., fk(f–k Aj) = Aj. Based on this we construct a new decomposition 
B(n) of the state space, using the components 
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where the indices ik ∈ {1,…, r}. A component Bσ in B(n) is then characterised by a sequence 
of indices σ = i1,…, in. The interpretation is as follows. If the system starts at time t = 1 with a 
state in Bσ, the system will in n consecutive time steps be found in the subsets: 
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at time 1, 
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at time 2, …, and finally 
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 at time n, i.e., x(t) ∈ 
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i
t

. This means that the sequence 
σ = i1,…, in can be viewed as a symbol sequence generated by the dynamics, given a certain 
basic partition of the state space A. In other words, the components in the partition B(n) 
correspond to subsets Bσ of state space that result in different symbol sequences σ generated 
by the dynamics. Each such subset has a certain probability measure, µ(Bσ), and we use this to 
define an entropy for the partition B(n), 
 

 

! 

H(B
(n )
) = µ(B" )ln

1

µ(B" )"

#  , (8.10) 

 
corresponding to the block entropy in Chapter 4. We now define an entropy, similar to the 
Shannon entropy, by taking the limit of infinite time (or symbol block length), 
 

 

! 

h(µ,A) = lim
n"#

1

n
H(B

(n )
) = lim

n"#
H(B

(n+1)
) $H(B

(n )
)( )  . (8.11) 

 
This entropy depends on how we have chosen to make the partition A and which invariant 
measure that is used. Next, we take the limit of this entropy when the partition is made 
arbitrarily fine, i.e., the size of the subsets in A tends to zero, which defines the measure 
entropy 
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! 

sµ = lim
diam(A )"0

h(µ,A), (8.12) 

 
where diam(A) denotes the largest distance between two points in a subset Aj.  
 
The entropy h(µ, A) is the average entropy per time step when observing the symbols 
(defined by the partition A) that are generated by the dynamics. If the system stabilises at a 
fixed point or a periodic orbit the symbol sequence will certainly have zero entropy. If the 
system is chaotic, the result may depend on how the partition is made, and therefore the limit 
used in the definition of measure entropy is needed. If sµ > 0, we cannot (always) tell which 
part of A the system will visit in the next time step, regardless of how many previous steps we 
have observed, and regardless of how fine we make the partition. Thus, there is a “creation” 
of information through the dynamics, and sµ can be said to quantify the average rate of 
creation of information.  
 
In some cases the limit diam(A) → 0 needs not be taken. If the partition A is done so that 
diam(B(n)) → 0 when n → ∞, then the measure entropy is given already by the entropy based 
on A, Eq. (9.9). If this holds, A is a generating partition. In this case we have a finite 
decomposition of state space, each part represented by a certain symbol. The dynamics x(t) is 
then represented by a sequence of symbols s(t). The longer sequence we observe, the more 
accurate will our knowledge be about the real position of the system at t = 0. Each time step 
brings us new information, in average sµ. A chaotic system has sµ > 0, and this can be viewed 
as an information flow from smaller length scales. It is reasonable to think that if the 
Lyapunov exponent corresponds to a divergence of a factor of two (λ = ln 2) then there is one 
bit of information creation per  time step (sµ = ln 2). In fact, it often holds (in all cases that we 
will encounter) that the measure entropy equals the Lyapunov exponent if it is larger than 0, 
 
 

! 

sµ = " , (8.13) 
 
but, of course, not if λ < 0.  
 

8.3.1 Extended example of a generated partition for a skew roof map 
Consider an iterated map defined by f(0)=α,  f(α)=1, f(1)=0 (where 0<α<1), with f(x) being 
linear on the intervals [0, α] and [α, 1], as illustrated in Fig. 8.1. By defining a partition so 
that points x in the first interval generate symbol A and in the second interval symbol B, the 
iterated map is transformed into a symbolic dynamics with the alphabet {A, B}. We let the 
symbols denote the intervals they correspond to: A = [0, α] and B = ]α, 1]. Following the 
procedure summarized in Eq. (8.9), we contruct the subsets of A and B corresponding to 
increasing lengths of sequences generated in the symbolic dynamics. For example, the set 
BBA is the subset that starts in B, in one iteration maps to B again, but in the next iteration is 
mapped to A, 
 
 

! 

BBA = B" f
#1
(B)" f

#2
(A). (8.14) 
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By taking such sequences x1x2… xm of increasing length m, where xj ∈ {A, B}, we see that the 
corresponding sets decreases in size (diam(x1x2… xm) → 0, as m → ∞. This means that we 
have a generating partition. 
 

 
 
Figure 8.1 The graph shows an iterated map with f(0)=α,  f(α)=1, f(1)=0, along with a partion 
associating points to the left and to the right of the peak with A and B, respectively. Two the right the 
corresponding symbolic dynamics is illustrated. The sets corresponding to A and B are then refined by 
finding subsets that in one iteration are mapped to the A and B, respectively. In this case it turns out 
that no points in A are mapped to A so there is no such subset. A continued refinement leads to 
decreasing subsets sizes, and we have a generating partition. 
 
In this system, with the present choice of partition, we have a have a simple way in which the 
sets A and B map onto these sets or unions of them. We note that the set A maps onto the set 
B, so that if we have a uniform probability density (uniform measure) over A, that is evenly 
distributed in one iteration over the set B. Similarly, a uniform measure over B is evenly 
distributed over A∪B, the whole unit interval, in one iteration. The fraction of the probability 
density from B that ends up in A is then the |A|, i.e., the length of the A interval, and the 
corresponding fraction for B is |B|. Because of this, we can easily find an invariant 
distribution, since the requirement on invariant measure from Eq. (8.2), 
 

 

! 

µ( f "1(B)) = µ(B)

µ( f "1(A)) = µ(A)
 (8.15) 

 
together with the result for this specific map f 
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! 

µ( f "1(B)) = µ(A)+ Bµ(B)

µ( f "1(A)) = Aµ(B)
 (8.16) 

 
results in the equations 
 

 

! 

µ(B) = µ(A)+ Bµ(B)

µ(A) = Aµ(B)
 (8.17) 

 
The constraint that the total measure is 1, 

! 

µ(A)+ µ(B) =1, replaces the last equation and we 
find that 

! 

µ(B) =1/(2 " B)  and 

! 

µ(A) = (1" B)/(2 " B). This procedure, with its solution, is 
equivalent to our analysis of finite state automata and the stationary distribution over the 
nodes, discussed in Chapter 3. In this example, the symbolic dynamics is in the form of a 
Markov process, defined by Eq. (8.17), and illustrated in Fig. 8.2. This type of partition, 
resulting in a Markov process for the symbolic dynamics is also called a Markov partition. 
The invariant measure for the sets A and B correspond to the stationary probability 
distribution over the nodes A and B, respectively. 
 

  
 
Figure 8.2 The finite state automaton representing the symbolic dynamics of Fig. 8.1 with an invariant 
measure that is uniform within A and B. 
 
This means that the measure entropy sµ, for this invariant measure, equals the entropy s of the 
stochastic process of Fig. 8.2. Based on our previous discussion on these processes, we 
conclude that 
 

 

! 

sµ = s = µ(B) B ln
1

B
+ (1" B)ln

1

1" B

# 

$ 
% 

& 

' 
( . (8.18) 

 
From Eq. (8.13), we can determine the Lyapunov exponent, λ=sµ. 
 
When we know the invariant measure, we can also calculate the Lyapunov exponent directly 
from Eq. (8.6), using the fact that the slope |f´(x)| equals (1–|A|)/|A| = |B|/(1–|B|) in A and 1/|B| 
in B. Then λ can be written 
 

 

! 

" = dxµ(x)ln # f (x)$ = dxµ(x)ln
B

1% B
A

$ + dxµ(x)ln
1

B
B

$ =

=
1% B

2 % B
ln

B

1% B
+

1

2 % B
ln
1

B
= s

  (8.19) 

 
Next, we discuss in what way a badly chosen partition can go wrong. 
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8.3.2 A partition that is not generating 
Consider the tent map, f(x)=1–|2x–1|, see Fig. 8.3. Since this is a map with slope |f´| = 2 
everywhere we know that all fixed points and periodic orbits are unstable. Furthermore, Eq. 
(8.6) says that any ergodic invariant measure results in a Lyapunov exponent λ = ln 2. Then, 
from Eq. (8.13) we also know that the measure entropy = ln 2.  
 
All this can be verified with the approach above, for example, by making a partition dividing 
the unit interval in two equal halves. Here, though, we will discuss what happens when one 
chooses a different partion, that are not necessarily generating. Therefore, we make a partition 
by dividing the unit interval at x = 3/4, so that A is the interval [0, 3/4] and B is ]3/4, 1]. This 
partition with two steps of refinements are shown in Fig. 8.3. We note already at symbol 
sequences of length 2 that there is a set AA (corresponding to points for which the map 
generates a pair of A´s in two iterations) that is not connected. A further refinement, going to 
symbol sequences of length 3 shows that this set is further split up in disconnected part and 
same holds now for the set AAB. This means that there will exist sequences x1x2… xm for 
which we do not have diam(x1x2… xm) → 0, as m → ∞. (The largest distance between two 
points in the set will typically be finitely separated since many sequences will have 
disconnected parts spread out over the unit interval.) Thus, this partition is not generating. 
 
 

 
Figure 8.3 The graph shows a partition (A, B), for the tent map, that is not generating.  
 
The symbolic dynamics resulting from this partion can still be analysed using the approach of 
the previous section. If the interval A is divided in three equal parts (at the points x=1/4 and 
x=1/2), A1, A2, and A3, then the partition (A1, A2, A3, B) is in fact generating. From the tent 
map we see that these intervals are mapped in one iteration as follows, 
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! 

A
1
" A

1
#A

2

A
2
" A

3
#B

A
3
" A

3
#B

B" A
1
#A

2

 (8.20) 

 
This means, using similar arguments as for the skew roof map, that the partition results in the 
symbolic dynamics being a Markov process with an automaton respresentation as in Fig. 8.4a. 
Since all intervals are of equal length, the transition probabilities are all ½. This Markov 
process has an entropy of ln 2, and gives the correct values for sµ and thus also for λ.  
 
The non-generating partition (A, B) has a symbolic dynamics that results from changing any 
symbol Ak to A. This means that the symbolic dynamics is a Hidden Markov model, shown in 
Fig. 8.4b, with an equivalent, more compact, representation in Fig. 8.4c. Even though the 
entropy involved in the choices in this automaton is still ln 2 the entropy of the symbol 
seqence (the Hidden Markov model) is smaller. This follows from the fact that there are 
different combinations of choices in the two A nodes (in Fig. 8.4c) that result in the same 
symbol sequence, i.e., some of the choices made does not show up in the symbol sequence, 
and the entropy of the symbolic dynamics is then smaller.  
 

  
 
Figure 8.4 (a) The finite state automaton corresponding to the symbolic dynamics of the generating 
partition (A1, A2, A3, B). (b) The hidden Markov model corresponding to the symbolic dynamics of 
the non-generating partition (A, B) of Fig. 8.3, and (c) an equivalent representation of the hidden 
Markov model. 
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8.4 Exercises 
 
8.1 Let a mapping f(x) be defined by the figure below, where f(1/3) = 1, f(2/3) = 2/3, and 

f(0) = f(1) = 0. 
   

  
 

0 1 

0 

1 

 f(x) 

x 

2/3 

2/3 

1/3 

1/3  
 
 Consider the dynamical system 
 
   xt+1  =  f(xt) .  
   
 Find the invariant measure µ that characterises the chaotic behaviour, and determine the 

corresponding Lyapunov exponent λ by using that measure. Show that there is a 
partition that has a symbolic dynamics with a measure entropy sµ that equals the 
Lyapunov exponent (as one should expect).  

 
 Suppose that we at a certain time t observe the system in the region given by  x > 2/3. If 

we find the system in this region again two time steps later, how much information do 
we gain by this observation? 
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8.2 Let a piecewise linear mapping f(x) be defined by the figure below, where 0 < β < 1, 
and where the mapping is determined by f(0) = 3/4, f(3/4) = 1, and f(1) = β. 

   

  0 1

0

1

!

f(x)

x1/2 3/4

3/4

 
 
 Consider the dynamical system 
 
  xt+1  =  f(xt) .  
   
 (a) At what value on β does the system become chaotic (starting with β being close to 

1)? Characterize the dynamics for β above the critical value for chaos (stable/unstable 
fixed point and/or periodic). Is there any other value on β that corresponds to a change 
in the dynamics in the non-chaotic regime? 

 
 (b) Suppose that β = 0. Determine the invariant measure that characterizes the chaotic 

behaviour, and calculate the Lyapunov exponent λ. Calculate also the measure entropy 
from the finite state automaton describing the symbolic dynamics (for a generating 
partition). 

 
 (c) If you know that the system is in the region x > 3/4 at time t, how much information 

do you get if you observe the system in the region x < 3/4 at time t+3 (again assuming 
β = 0)? 
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8.3 Let a piecewise linear mapping f(x) be defined by the figure below, where 0 < α < 1, 
and where the mapping is determined by f(0) = α, f(1/4) = 0, and f(1) = 1/4. 

   

  0 1

0

1

!

f(x)

x1/4

1/4

1/2  
 
 Consider the dynamical system 
 
  xt+1  =  f(xt) .  
   
 (a) At what value on α does the system become chaotic (starting with α being small)? 

Characterize the dynamics for α below the critical value for chaos (stable/unstable fixed 
point and/or periodic). Is there any other value on α that correspond to a drastic change 
in the dynamics in the non-chaotic regime? 

 
 (b) Suppose that α = 1. Determine the invariant measure that characterizes the chaotic 

behaviour, and calculate the Lyapunov exponent λ. Calculate also the measure entropy 
from the finite state automaton describing the symbolic dynamics (for a generating 
partition). 

 
 (c) If you know that the system is in the region x < 1/4 at time t, how much information 

do you get if you observe the system in the same region again at time t+3 (again 
assuming α = 1)? 
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8.4 Let a mapping f(x) be defined by the figure below, where 1/2 < α < 1. 
   

  0 1

0

1

!

f(x)

x0.5  
 
  Consider the dynamical system 
 
  xt+1  =  f(xt) .  
   
 At what value on α does the system become chaotic?  
 
 Suppose that α = 7/8. Determine the invariant measure that characterizes the chaotic 

behaviour, and calculate the Lyapunov exponent λ. Calculate also the measure entropy 
from the finite state automaton describing the symbolic dynamics (for a generating 
partition). 

 
 If you know that the system is in the region x < 1/4 at time t, how much information do 

you get if you observe the system in the same region again at time t+3? 
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8.5 Let a mapping f(x) be defined by the figure below (so that f(0) = α, f(1/4) = 1/2, 
f(3/4) = 1, f(1) = 0, with 0 ≤ α ≤ 1/2. 

   

  
0 1

0

1

 f(x)

x3/4

1/4

1/21/4

1/2

3/4

!

 
 
 Consider the dynamical system 
 
  xt+1  =  f(xt) .  
   

a) At which value of α < 1/2 does the system become chaotic when decreasing from 
1/2?  

 
b) What is the behaviour for α close to 1/2 (above the critical value derived above). 
Describe qualitatively only.  

 
 Assume from now on that α = 0.  
 

c) Find the invariant measure µ that characterises the chaotic behaviour, and determine 
the corresponding Lyapunov exponent λ by using that measure. Find a partition that has 
a symbolic dynamics with a measure entropy sµ that equals the Lyapunov exponent (as 
one should expect).  

 
 d) Suppose that we at a certain time t observe the system in the region given by  x > 3/4. 

If we find the system in this region again three time steps later (at t + 3), how much 
information do we gain by this observation? 
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8.6 Suppose that for a continuous mapping f(x), 0 ≤ x ≤ 1, holds f2(0) = 1, f3(0) = 0, and that 
the function is linearly increasing in the interval 0 ≤ x ≤ f(0), and linearly decreasing in 
the interval f(0) ≤ x ≤ 1. 

 
  Consider the dynamical system 
 
   xt+1  =  f(xt) .  
   
 Determine at what value f(0) the Lyapunov exponent λ has its maximum. What is the 

value of λ?  
 
 If an observer knows that the system at time t is found in the interval 0 ≤ x ≤ f(0), how 

much information does the observer gain when she also learns that the same holds at 
time t + 4? 

 
 
8.7 Let a mapping f(x) be defined by the figure below, where f(1) = α and f(0.4) = 0. 
   

  0 1

0

1

!

f(x)

x0.4  
 
  Consider the dynamical system 
 
  xt+1  =  f(xt) .  
   
 Describe the behaviour when α is small? At what value on α becomes the system 

chaotic?  
 
 Suppose that α = 2/7. Calculate the Lyapunov exponent λ. What does a generating 

partition of the interval [0, 1] look like, and what is the measure entropy sµ ? 
 
 What is the Lyapunov exponent if α = 2/5? 
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9 Algorithmic information theory 
 
The information-theoretic properties discussed so far requires a probabilistic description of 
the system studied. Such probabilities may come from a statistical analysis, either from a 
collection of data from a study of several systems, or, as in the case for symbol sequences, 
from some internal statistics of the system. The internal statistics may detect correlations 
between symbols which can be exploited to encode the system in a more compact way, as was 
illustrated in Chapter 3. But there are also other internal structures in a symbol sequence that 
could be used for making a more compact representation of the system. One example is if the 
symbol sequence represent the digits in a comupatable irrational number, like the decimal 
digits in π. In such a situation there is a very short algorithm generating the symbols, if the 
sequence is long, compared to what one could get by a statistically based compression. 
 
In algorithmic information theory the basic idea is to define information as the length of the 
most compact description of the system. Formally this is  done by using an abstract general 
computing device, a Turing machine, that transforms a description, in the form of a computer 
programme, into the desired system as an output. The algorithmic information of a system is 
then defined as the length of the smallest computer program that produces the system as an 
output. The formal definition of these concepts and some extensions is presented in the 
following sections. Sometimes the shortest description, the algorithmic information, is also 
referred to as the algorithmic complexity. 
 

9.1 The Turing machine 
The type of Turing machine that we need for the definition of algorithmic information is a 
universal one. This means that it is capable of performing any computation. Any 
computational structure that is present in the system can then be exploited to find a more 
compact description. A computationally universal Turing machine can also simulate any other 
Turing machine. 
 
We will use the following, fairly general definition, of a computationally universal Turing 
machine. There is a control unit that is communicating with a program tape and a another 
tape, the output tape, which is used for both memory and output, as indicated in Fig. 9.1. If 
one need an input, separate from the program, that is initially placed on the output tape. The 
output tape is unbounded (infinite). We assume that a binary alphabet is used. 
 

  
 
Figure 9.1 The Turing machine 
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At each computational step, the control unit is located at certain position on the output tape. 
The program determines the action to be performed, which depends on the internal state q of 
the control unit and the symbol at the current position on the output tape (the input for the 
computational step). The actions are: move left (L) or right (R) on the output tape, write a 
symbol (0) or (1) on the current position, or halt (H).  
 
The set of states Q of the control unit contains one start state q0, one final state s (the halt 
state), and a number of intermediary states qi. The set I of inputs is {0, 1}, and the set A of 
actions is {L, R, 0, 1}. A program step is a mapping from Q x I to Q x A and can be written as 
 
 qi i a qj , (9.1) 
 
where qi is the internal state, I the symbol of the current output tape position, a the action to 
be chosen, and qj the new internal state. If qj = s, the program halts. For example, if the tape 
head is positioned within a block of 1’s on the output tape, the following programme shifts 
that sequence one step to the right, 
 
 q0 0 0 s  
 q0 1 L q1  
 q1 1 L q1  
 q1 0 R q2  
 q2 1 0 q3  
 q3 1 R q3  
 q3 0 1 s  
 
The first three lines move the control unit to the leftmost 1 of the sequence, then that is 
changed to a 0. The remaining part of the program finds the first 0 to the right and replaces 
that with a 1 before the program halts. 
 
The halting problem from computation theory applies to the universal computer, stating that 
there is no general procudere that can determine whether a computer programme will ever 
halt.  
 

9.2 Algorithmic information 
 
Based on the computationally universal Turing machine, denoted U, described above, we will 
now make a formal definition of the algorithmic information quantity. The algorithmic 
information HU(αm) of a symbol sequence αm of lengt m is defined by the size of the smallest 
sum of the lengths of program P and input X that generates the sequence αm = U(P, X) as an 
output, 
 
 

! 

H
U
("

m
) = min

U (P ,X )="m

l(P) + l(X) . (9.2) 

 
The abstract computer U described in the previous section is only one example of a 
computationally universal machine. But a computationally universal machine can simulate 



 

 114  

any computational process, which includes the simulation of any other machine. The 
simulation program of another machine has a certain, but finite, length. Therefore, one can 
say that a general algorithmic information quantity  equals any quantity based on a specific 
universal computer C up to a constant of order O(1), 
 
 

! 

H("
m
) = H

C
("

m
) +O(1) . (9.3) 

 
A sequence αm of length m that cannot be described more compactly than itself, e.g., by a 
program saying “print the input sequence” which can be done by directly entering the halt 
state with  the desired sequence αm placed as an input on the output tape. Then l(X)=l(αm)=m 
and H(αm) = m + O(1).  
 
 

9.3 Relations between algorithmic and Shannon-based information 
 
Because of the halting problem, the algorithmic information is not a generally computable 
quantity. There is no general procedure to tell you whether a given program with its input is 
the smallest. One cannot always test all combinations of program and input since some of 
them may lead to compuational processes that never halts, but for which we cannot know that. 
 
However, for seqences α (in the limit of inifinite length) generated by some stationary 
stochastic process, we will hardly ever find one wich happen to contain some computational 
structure (e.g., from the digits in a computable irrational number). We define the average 
algorithmic information per symbol, 
 

 

! 

h(") = lim
m#$

1

m
H("

m
) . (9.4) 

 
In this situation, one can only hope for a statistical structure, coming from the stochastic 
process, that makes it possible to find a more compact representation than the seqence itself. 
By letting the program P serve as a decoder working on the most compressed coded sequence, 
we will get a finite program of length lP taking as input a coded sequence xm of length s·m (for 
large m). Here s is the ordinary information theory entropy per symbol of the sequence α. 
This means that (Zhvonkin and Levin 1970, Brudno 1977, Lindgren 1987), for seqences 
generated by a stochastic process, almost allways the algorithmic information equals the the 
information-theoretic entropy per symbol, 
 

 

! 

h(") = lim
m#$

1

m
l
P

+ m % s+O(1)( ) = s . (9.5) 

 
Following Chaitin (1979), we can define a measure of computational structure at different 
lengths. Let ωd(αm) be a decomposition of αm into non-overlapping sub-sequences of lengths 
≤ d. Further, let HU(γ), be the algorithmic information of a sub-sequence γ in ωd(αm). Define 
the composed algorithmic information LU(ωd) as the sum of the description lengths from the 
sub-sequences γ, where the length for each γ is its length l(γ) or its algorithmic information, 
whichever is the smallest, 
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L
U
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d
) = min H

U
(#),l(#)( )

# $"d

% . (9.6) 

 
Now, we define the smallest description, defined in this way, that only exploits structures at 
lengths up to d by taking the minimum over all possible decompositions ωd(αm), 
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L
U
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L
U
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d
)( ) . (9.7) 

 
We note that 
 
 

! 

m " L
U

(m )
(#

m
) = H

U
(#

m
) +O(1) , (9.8) 

 
and that 

! 

L
U

(1)
("

m
) = m . It is also clear from Eqs. (9.6) and (9.7) that 

 
 

! 

L
U

(d )
("

m
) # L

U

(d$1)
("

m
) . (9.9) 

 
The difference between two such description lengths, comparing d and d–1, quantifies the 
algorthmic information 

! 

C
U
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m
) in “computational structures” of length d,  
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m
) ,  d = 2, 3, …, m. (9.10) 

 
The sum of all these quantities results in 
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L
U

(1)
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m
) # L

U

(m )
("

m
) = m # L

U

(m )
("

m
) . Therefore we can 

view the following expression as a decomposition of the total information m of αm into 
contributions from computational structures of different lengths and the remaining algoritmic 
information, 
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U
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m
)

k= 2
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# + L
U

(m )
("

m
) .   (9.11) 

 
From this it is clear that one may interpret the algorithmic information 

! 

L
U

(m )
("

m
)  as 

“algorithmic randomness”. This decomposition is the computational equivalent to the 
information decomposition of Eq. (3.23). But since computational structures are not 
necessarily statistically detectable, there is no direct relation between the concepts in Chapter 
3 and those presented here. 
 

9.4 Exercises 
 
9.1 What can be said bout the change in the algorithmic information h(α) in one time-step 

of a deterministic CA rule when α is the (inifinte) state of the CA? 
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10 Hints and answers to selected problems 
 
Answers to some problems in Chapter 2 
 
2.1 log 51 
 

2.2 

! 

1

2
"1+

b1
2

b2
2

# 

$ 
% 

& 

' 
( + log

b2

b1

) 

* 
+ 

, 

- 
.  

 
2.3 - log ( 2(1 – F(2)) ), where F(2) = P(x<2) for the standardised normal distribution 

(Gaussian with mean 0 and variance 1).  
 
2.4 Homework problem 1.1 
 
2.5 p(k) = 1/3, k = 0, 1, and 2. 
 
2.6 –log[e–1] 
 –log[1 – e–1] 
 
2.7 e–λ Δt = ½, gives Δt = (ln 2)/λ 
 
2.8 p(k1 . . . kn) = aK(1-a)n–K with K = Σj kj 
 
2.9 log b  +  (1 + log(2π))/2 
 
 
Answers to some problems in Chapter 3 
 
3.1 We only aim at minimising the length of the coded message in the limit of an infinite 

sequence, and we do not attempt in minimising the start and end of the coding. 
Therefore, (i) initially use 0’s as 1’s uncoded until this first 1 appears; (ii) from then 
on use 1 and 0 only when preceeding symbol is one; if preceeding symbol is 0 no code 
word is needed; (iii) if the message ends with a sequence of 0’s all of them are 
expressed in the coded sequence (as in the initial part). In this way the average length 
is compressed down to a fraction s = 2/3 of the originial sequence. 

 
3.2 s = 1 (bit)  
 
3.3 s = 1/2 (bit), with arbitrarily long correlations. 
 
3.4 Homework problem 2.1 
 
3.6 s = – (p log p + (1 – p) log(1 – p))/(2 + p), vary p to maximise s. 
 
3.9 Homework problem 2.2 
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Answers to some problems in Chapter 4 
 
4.1 s(0) = s(1) = 2/3 (bit); same holds for R22. 
 
4.2 s(0) = s(1) = s(2) = 2/5 (bit); from exam 2005, solution on web page. 
 
4.3 s(0) = S[{ρ/4, 1– ρ/4}],  s is conserved in the time evolution. 
 For entropy estimate based on finite blocks (after long time), see solution on web page 

(from 2005 exam). 
 
4.4 s(0) = s(1) = 2/7 (bit); s(2) = 0 
 
4.5 Homework problem 3.1 
 
4.6 s(0) = s(1) = s(2) = 1/2 (bit); in general s(t) = ½·S[{q, 1–q}] 
 
4.7 η = S[{q, 1–q}] + log 2 
 
4.8 s(0) = s(1) = s(2) = 1/2 (bit); for transition probability ≠ ½ one gets correlation 

information appearing in the same way as for R60 (in the example in the lecture 
notes). 

 
4.9 s(t) = 1/2 (bit); the CA reaches a fixed point after one time step. 
 
 
Answers to some problems in Chapter 5 
 
5.1 Homework problem 4.1 
 
5.2 This results in three decoupled systems, each with a solution as in Eqs. (5.39-40). 
 
5.3  

 

! 

p
0

= P(""), p
1

= P("#), p
2

= P("$);

p
2

= e%µ =
1

4(e
&J + e%&J + 2)

, p
0

= e%µ +&J
, p

2
= e%µ%&J  

 
 
5.4 Discussed in the lecture. Summary: 
 

 

! 

p
0

= P(""#), p
1

= P("""), p
2

= P("#");

p
0

2
= p

1
p
2
e
4$J
,

p
1

p
0

+ p
1

= e%µ
,

p
2

p
0

+ p
2

= e%µ%2$J  

 
5.5 Solution on course web page, see exam March 2005. 
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5.6 Formulate problem by setting up the following table: 
 

config. energy notation multipl. 
AA J p0 1 
BB J p1 1 
CC J p0 1 
AC J p2 2 
AB –J p3 2 
BC –J p3 2 

 
 p(A) = p0 + p2 + p3, p(B) = p1 + 2p3, p(C) = p(A). 
 s = S2 – S1,  
 L = s + β(u – J(2p0 + p1 + 2p2 – 4p3)) + µ(1–2p0–p1–2p2–4p3). 
 Derivation w resp. to pk gives four eq. + normalisation, which solves the problem… 
 
5.7 (a) No, this automaton contains arbitrarily long correlations, while the equilibrium 

state is limited to lengths up to m. 
 (b) See course web site (exam problem 2002-2b). 
 
5.8 Homework problem 4.2 
 
5.9 Single cell probabilities: P(empty) = p0, P(single) = p1, P(pair) = p2. 
 p0 = 1 – ρ + p2, p1 = ρ – 2p2,  
 (ρ – 2p2)2 = (1 – ρ + p2) p2 exp(–βJ). 
 which gives p2 and the rest. At T=0 (infinite β), p2 = ρ/2, p0 = 1 – ρ/2, p2 = 0. 
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