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Abstract

A continuity equation for information is presented, involving
flows in both space and scale in chemical pattern formation
systems. The flows are connected to thermodynamic prop-
erties of the system. Information leaves the system (or is
destroyed) at the smallest length scales, which corresponds
to entropy production. Information enters the system at the
largest length scales when the system is open to an inflow of
Gibb’s free energy. The continuity equation describes how
information can be aggregated at different scales and posi-
tions during the pattern formation process. The formalism is
applied to the Gray-Scott model, exhibiting self-replicating
spots in a spatially extended system.

The aim of the present paper is to give a physically con-
sistent picture on how spatial structure emerge in chemical
systems. This picture should illustrate how aggregation of
information in the form of spatial patterns can be connected
to the physical constraints of the studied system posed by
thermodynamics, in particular the driving forces in terms of
flows of free energy. Our ambition is to contribute towards
a theoretical framework, that may be used to find necessary
conditions for the formation of higher-order structures from
lower-level components and mechanisms – a framework to
encompass both biological life and artificial life.

Pattern formation in chemical systems is an example of
a process where the connection between information theory,
statistical mechanics, and thermodynamics is useful for a de-
scription and characterisation of the dynamics. Patterns can
be characterised by their information content - a character-
isation that may include how information is distributed in
the system, both with respect to position and scale of res-
olution (Eriksson and Lindgren, 1987). At the same time,
the flows of Gibbs free energy that drives the pattern for-
mation process, or maintains the spatial structures that have
been formed, can be given an information-theoretic interpre-
tation. By combining these information-theoretic perspec-
tives with the general reaction-diffusion type of chemical
dynamics, we derive a continuity equation for information
in open chemical systems. Information flows in both space
and scale; flows across system boundaries are due to inflow
of Gibbs free energy, and at the microscopic level to entropy

production in chemical reactions and in the diffusion pro-
cess. The results presented here is a generalisation of the
equation derived earlier for closed systems (Eriksson et al.,
1987).

The formalism is exemplified by an analysis of the
Gray-Scott model (Gray and Scott, 1984), exhibiting self-
reproducing “spots” in a spatially extended system (Lee
et al., 1993; Pearson, 1993). In this model, two chemical
components U and V react according to U + 2V → 3V, V →

G, where G is not reacting with U or V.
The formalism is based on the information-theoretic con-

cept of relative information or Kullback information (Kull-
back, 1959), defined by

K[P(0);P] =
∑

i

pi log
pi

p(0)
i

≥ 0,

where P and P(0) are normalised probability distributions.
This measure quantifies the information one gains when one
learns that the a priori distribution P(0) was not correct but
that the system is described by P. An advantage with the
use of this quantity as a basis for the information-theoretic
analysis of the spatial structure in a chemical system is the
strong connection to statistical mechanics and thermody-
namics (Jaynes, 1957). This will make it possible to relate
our information-theoretic analysis to thermodynamic prop-
erties of the system.

The exergy E, or available energy, for a system of volume
V , characterised by pressure p, temperature T , and chemical
potentials gi (for M different components), in an environ-
ment characterised by the corresponding intensive variables
(p0, T0, and gi0), can be written (Reif, 1985)

E = S(T −T0)−V(p− p0)+

M
∑

i=1

Ni(gi −gi0),

where S is the thermodynamic entropy of the system and N i
is the number of molecules of the different types. The total
number of molecules is N =

∑

i Ni.
Assuming T = T0 and p = p0, and ideal gas expression for

the chemical potential gi = kB T0(C+ lnci), with normalised
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Figure 1: A schematic picture of the flows of information
in a chemical pattern formation system. The pattern is char-
acterised by an information density k(r,x, t) distributed over
spatial dimensions as well as over different length scales r.
Information flows both in space and in scale, where the flow
is destroyed when it gets down to the microscopic level.
Here information disappears into microscopic degrees of
freedom due to entropy production. Information enters the
system at the very large scale due to a diffusion-controlled
inflow of chemical information or Gibbs free energy. A pat-
tern is formed when information that flows downwards in
scale is aggregated at certain positions as described by the
continuity equation.

concentrations ci = Ni/N and corresponding concentrations
ci0 in the environment, we get a Kullback information ex-
pression for the exergy, or the Gibbs free energy, of the sys-
tem

E = kB T0 N
M

∑

i=1

ci ln
ci

ci0
= kB T0 N K[c0;c]

or, in general, when spatially dependent concentrations are
allowed,

E = kB T0 n
∫

V
dx

M
∑

i=1

ci(x) ln
ci(x)

ci0

= kB T0 n
∫

V
dx K[c0;c(x)] = kB T0 nK,

where n = N/V . This relation between exergy E and in-
formation K allows us to connect the information-theoretic
analysis to the thermodynamic properties of the system.
The integrated Kullback information, K, between actual and
equilibrium concentrations, is our starting point for the anal-
ysis of spatial structure. First, by using the average concen-
tration the information can be decomposed into a structural
part Kstruct and a chemical part Kchem. The structural infor-
mation measures deviation from a homogenous state, and
the chemical information measures the deviation of average

concentrations ci from chemical equilibrium:

K =

∫

V
dx

∑

i

ci(x) ln
ci(x)

ci
+V

∑

i

ci ln
ci

ci0

= Kstruct +Kchem

In order to get a more detailed description, we continue with
a decomposition of the structural information into contribu-
tions k(r,x, t) from different positions x as well as from dif-
ferent length scales r. In order to do this, we introduce a
resolution dependent concentration distribution. We define
the concentration c̃i(r,x, t) at resolution r as

c̃i(r,x, t) = exp(
1
2

r2∇2)ci(x, t),

where exp( 1
2 r2∇2) is the resolution operator in d di-

mensions, defined by the convolution with the kernel
(2πr2)−d/2 exp[−x2/(2r2)]. As can be seen in the Fourier
space, this operator suppresses structures at length scales
. r. At r = 0, the two concentrations coincide since
c̃i(0,x, t) = ci(x, t). If r is much larger than the sys-
tem size, the concentration is approximately homogenous,
c̃i(∞,x, t) = ci(t).

This means that the structural information can be written

Kstruct =

∫ ∞

0
dr/r

∫

dx k(r,x, t),

with a local information density at position x and scale (res-
olution) r,

k(r,x, t) =
∑

i

c̃i [r∇ ln c̃i]
2
≥ 0.

In the following we present an information-theoretic de-
scription of how information is flowing in the system that
connects to the thermodynamic loss of information due to
entropy production. We will assume that the system evolves
according to the reaction - diffusion equation,

ċi = Di∇2ci +Fi(c).

This will be formulated in a continuity equation for infor-
mation density k, taking into account flows both in scale (r)
and in space (x), see Figure 1. There may also be sources
or sinks due to the fact that we allow for an open system.
By assuming that the following continuity equation holds,
we can derive the terms for the flow in the scale direction
jr(r,x, t), the spatial flow j(r,x, t) and the sources/sinks term
J(r,x, t),

k̇(r,x, t) = r
∂
∂r

jr −∇ · j+ J .

In order to properly define the flows, we also require
(i) that the flows are rotation-free, (ii) that the system is
spatially closed, i.e., the chemical flows across the system
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Figure 2: Top row The concentration of the chemical V in the system at three times; t = 0, t = 1000, and t = 7000 steps.
White corresponds to zero concentration, and black corresponds to a concentration of one half. Bottom row The structural
information, integrated over the system, as a function of the resolution r. The length of the system is 1, D u = 2Dv = 0.05, D̂ =
0.02,k = 0.058.

boundaries are in a different direction (in which the system
has no extension), (iii) that the information content of the
inflow and outflow corresponds to the net flow of Gibbs free
energy into the volume, and (iv) the destruction of informa-
tion corresponds to the entropy production.

In the limit of r → ∞ we cannot distinguish any spatial
structure, but the chemical information Kchem is still present,
unaffected by the resolution parameter. In a decomposition
of the total information this part can therefore be considered
as present at the r → ∞ limit. The chemical information
will be consumed by the chemical reactions and we should
therefore expect that a proper definition of information flow
shows how information will flow in the direction towards
smaller length scales r. If the system gives rise to spatial
structure, that should be captured in the continuity equation,
resulting in a temporal accumulation of structural informa-
tion.

The entropy production is determined by one term cor-
responding to the entropy produced due to diffusion in the
system and one term given by the reactions that tend to even
out the chemical non-equilibrium in the system. The entropy
production certainly leads to a decay of the information in
the system – decay of structural information as well as of
chemical information.

It is reasonable to assume that information is leaving the

system, through the thermodynamic entropy production, at
the smallest length scales of the system, i.e., at r = 0. At
this point information disappears from the macroscopic de-
scription of our system, and the information is spread out on
microscopic degrees of freedom.

Therefore, we define the information flow j r in the di-
rection of smaller r, at the border r = 0, to be equal to the
chemical entropy production. To define this flow for general
resolution values r, we generalise by introducing the resolu-
tion operator into the expression for entropy production,

jr(r,x, t) =
∑

i

Di
[∇c̃i]

2

c̃i
+ Jpot

Jpot(r,x, t) =

(

ln
c̃i

ci0

)

exp(
r2

2
∇2)Fi(c(x, t))

Now we use the continuity equation for the closed system, in
which J = 0, to define the spatial flow by j(r,x, t) = r2∇Jpot.

In the case of an open system, the flow of chemical in-
formation through the system (typically an inflow of a sub-
stance acting as a fuel and an outflow of waste products)
affects the pattern formation process in two opposite ways.
If the flow across the system boundary is controlled by dif-
fusion, the direct effect is a decrease of the spatial structure
at all length scales, since such a flow tends to even out all
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Figure 3: Top row The structural information in the system at t = 10000 steps, for three values of the resolution r; r = 0.01,
r = 0.05, and r = 0.1. Bottom row The information flow j r(r,x, t). The length of the system is 1, Du = 2Dv = 0.05, D̂ =
0.02,k = 0.058.

spatial differences. The opposite effect is that the flow may
lead to an increase in chemical information, i.e., the system
is pushed away from equilibrium. This is of course what
makes it possible to keep the driving information flow for
the pattern formation processes in the system. The change
in chemical information takes the following form

k̇chem(t) = − jr(∞,x, t)+
∑

i

X i ln
ci

ci0
,

where X i is the average net inflow of component i. Thus, in
a stationary situation, the information flow towards smaller
length scales, jr, is balanced by the inflow of exergy (or
Gibbs free energy) in units of kBT0, represented by the last
term.

The negative effect from the diffusion over the system
boundary is captured by the sink term J in the continu-
ity equation. In a diffusion controlled flow, X i is given by
D̂i(ĉi −ci), where D̂i > 0 and ĉi is the concentration outside
the system, chosen so that ĉi > ci for inflow and ĉi = 0 for
an outflow of i, respectively. This results in the following
expression for J;

J(r,x, t) = −
∑

i

D̂i(ci + ĉi) [r∇ ln c̃i]
2
≤ 0,

which shows that J always is a sink term.
We apply the formalism to the pattern formation of the

“self-replicating spots” system (Gray and Scott, 1984; Lee
et al., 1993; Pearson, 1993), U +2V → 3V and V → G, with
the dynamics

ċu = Du∇2cu − (cu − kbackcv)c2
v + D̂(1− cu)

ċv = Dv∇2cv +(cu − kbackcv)c2
v − k cv− D̂cv.

We have introduced a very slow back reaction (k back = 10−5)
in order to get the relationship between equilibrium concen-
trations of U and V defined by the reactions. In Figure 2,
the dynamics is illustrated starting from an initial state (left)
with a square of high concentration of V. As the system
evolves four concentration peaks (spots) emerges from the
square, and these spots reproduce by growing and splitting
until the system is filled with spots (middle and right). In the
process, spots may disappear, which leaves space for other
spots to reproduce. In the lower part of the figure, the de-
composition of the information in the pattern with respect
to scale is plotted for the three snapshots above (at time 0,
1000, and 7000, respectively). It is clear that the initial state
has a longer characteristic length as detected by the infor-
mation density. When the system produces the spots at the



significantly shorter length scale, information is found both
at the old length, now due to the size of the cluster (mid-
dle), and at the length scale of the spots. When the square
distribution has been completely decomposed into spots, no
information is left at the initial length scale.

In Figure 3, we show the information density over the
system for three different length scales after long time (up-
per part), and the information flow in scale, j r, for the same
state (lower part). At low resolution, or large r (right), the
information density is low and captures structures of longer
lengths, while at finer resolution, small r (left), the informa-
tion density is large and reflects the pattern of spots. Note
that each spot is seen as a circle in the information density
picture, since the information is sensitive to gradients in the
pattern. The information flow in scale, , is close to homoge-
nous for large r (right), but when information moves on to
finer scales of resolution, the spatial flow j redistributes the
flow so that a higher flow jr is obtained at the concentration
peaks. At finest resolution, r = 0, this flow leaves the sys-
tem as entropy production, which is mainly located to the
concentration peaks where the chemical activity is high.

In this paper we have presented an information-theoretic
perspective on pattern formation in chemical systems. The
continuity equation, with the corresponding information
flows, connects to thermodynamic flows and thus to ther-
modynamics restrictions of the system. It is clear that the
second law of thermodynamics leads to a destruction of in-
formation at the finest levels of resolution. Is there a second
law of information-dynamics in thermo-dynamical systems,
which makes information flow in the direction of smaller
scales? Under what circumstances is this law valid? These
are questions for further investigation.

In the Gray-Scott model (Gray and Scott, 1984), we detect
an aggregation of information on macroscopic length scales.
This illustrates how information theory can be used in or-
der to determine whether spatial structure emerges on length
scales much larger than those of the individual components
and their interaction. It should be noted that there is also an
information flow in the opposite direction (i.e. from micro
scale to macro scales) due to noise, which govern the forma-
tion of spatial configurations. This flow is several orders of
magnitude smaller, but may still control where in space the
information from the free energy will be aggregated. The in-
terplay between the driving and the controlling information
flows will be investigated in a forthcoming paper.
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